首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A new series of polycrystalline Bi3 − x Nd x Ti1.5W0.5O9 (0.25 ≤ x ≤ 0.5) layered perovskite-like oxides were synthesized as single phases. The analysis of the X-ray powder diffraction data showed that all compounds crystallize in the polar orthorhombic structure of Aurivillius phase type with the space group A2 1 am.The temperature dependences of the dielectric properties of the compounds obtained were investigated in the frequency range from 1 to 1000 kHz. For all compounds the temperature dependences of the relative permittivity ɛ/ɛ0(t) contain high-temperature maxima corresponding to the Curie temperature (t c ). The latter decreased from 630 to 530°C and ɛ/ɛ0(t c ) decreased by a factor of nearly 3 with an increase in the neodymium amount by a factor of 2. The found activation energies E a of charge carriers for all compounds are close (∼0.76 eV) and independent of neodymium amount.  相似文献   

2.
Co0.5Zn0.5Fe2O4 nanoparticles were prepared using mechanical alloying (MA) and sintering. The crystallite size, coercivity, retentivity and saturation magnetization were also measured. The frequency dependence of dielectric and the magnetic parameters, namely, real permittivity ε′, loss tanget tan δ, real permeability μ′ and loss factor μ″ were measured at room temperature for samples sintered from 600 to 1000 °C, in the frequency range 10 MHz to 1.0 GHz. The results show that the crystallite size of the resulting products ranges between 16 and 67 nm for as-milled sample and the sample sintered at 1000 °C, respectively. The sample sintered at 1000 °C, measured at room temperature exhibited a saturation magnetization of 37 emu g−1. The values of permittivity remain constant within the measured frequency, but vary with sintering temperature. The permeability values, on the other hand however vary with both the sintering temperature and the frequency, thus, the absolute value of the permeability decreased after the natural resonance frequency.  相似文献   

3.
Zero field cooled dc-magnetization measurements of monodispersed Mn0.5Zn0.5Fe2O4 nanoparticles dispersed in kerosene exhibit two transitions at low temperatures. These transitions correspond to (i) the superparamagnetic to blocked superparamagnetic and (ii) the blocked superparamagnetic to surface spin-glass like/quantum superparamagnetic state upon lowering the temperature. The existence of a disorder surface is confirmed by recording small-angle neutron scattering data below and above the Curie temperature. Magnetic relaxation analysis shows a plateau at low temperature (below 5 K) with a slight minimum at 3 K, which is a characteristic of the surface spin-glass-like state. This is analyzed considering the energy distribution n(E)∼1/E. The existence of surface disorder dominates at low temperature and mimics the transition from superparamagnetic to quantum superparamagnetic states.  相似文献   

4.
We report that ferroelectric-relaxor behavior is induced by doping of SrO and TiO2, or BaO and TiO2 into classic ferroelectric (Na0.5K0.5)NbO3. It is found that [(Na0.5K0.5)0.9Sr0.1](Nb0.9Ti0.1)O3 ceramics exhibit a pronounced ferroelectric-relaxor behavior, comparable to that of [(Na0.5K0.5)0.9Ba0.1](Nb0.9Ti0.1)O3 ceramics. Our results indicate that the relaxor behavior is closely related to the appearance of micropolar regions in these systems. The relaxor behavior should arise from the dynamic response of micropolar clusters. Raman spectra of [(Na0.5K0.5)1−xSrx](Nb1−xTix)O3 ceramics measured in the wavenumber range from 100 to 1200 cm−1 confirm that the first order scattering is dominant in phonon bands should result from both short-range ordered region (micropolar regions) and disordered matrix. The frequency dependence of dielectric permittivity measurements show that the relaxor behavior of SrO and TiO2, or BaO and TiO2 doped (Na0.5K0.5)NbO3 ceramics is not a Debye type in the radio frequency range.  相似文献   

5.
The structure, orientation, and the response of electroresistance to magnetic field H and varying temperature T have been studied for 30-nm-thick La0.67Ba0.33MnO3 (LBMO) films. The deviation of the [001] direction in manganite layers from the normal to the plane of the (LaAlO3)0.29 + (SrAl0.5Ta0.5O3)0.71 substrate strictly corresponds to the vicinal angle of the latter. The minimum yield determined from 227-keV proton scattering spectra is 0.025, signifying a high order of the cationic sublattice in the films. The biaxial compression of stable nuclei of the manganite phase affects their stoichiometry, thus contributing to the depletion of LBMO films in the alkaline-earth element. The maximum electroresistance values have been observed in the films grown at T max ≈ 320 K, a temperature about 20 K lower than the Curie temperature of the corresponding bulk single crystals, and the maximum magnetoresistance (MR ≈ −0.42, μ0 H = 2 T) occurs at T ≈ 300 K. At low temperatures (T < T max/3) and μ0 H < 0.45 T, the electroresistance response of LBMO films to a magnetic field materially depends on the anisotropic magnetoresistance and the intensity of hole scattering from domain walls; when μ0 H > 0.5 T, the major current-carrier relaxation mechanism is the interaction with magnons.  相似文献   

6.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

7.
Abstract

Dielectric permittivity studies of Na0.5Bi0.5TiO3 single crystals in a broad range of frequency up to 10 MHz and temperature 300—823 K are reported. In this temperature range dielectric dispersion below 1 MHz has been found. The obtained data were fitted to the Cole-Cole relation. The mean relaxation time τ is strongly temperature dependent (0.04 ? 2.6 × 10?5 s). A remarkable hysteresis effect in the values of τ on cooling and heating took place. The Δε(T) dependence (the maximal value of Δε ~ 400) is similar to the global ε′(T) response at low frequency. An isothermal structural transformation in Na0.5Bi0.5TiO3 was observed by X-ray measurements. The order of the time in which the transformation takes place (~300 minutes) corresponds to the time in which the strongest time evolution of electric permittivity and time changes of dielectric dispersion were detected.  相似文献   

8.
9.
Dielectric properties are reported on polycrystalline cubic ordered-perovskite cuprate Sr2Cu(Re0.69Ca0.31)O6 in the frequency range 10 Hz-100 kHz at temperature from 300 to 500 K. Both the dielectric permittivity and dielectric loss factor are found to be frequency and temperature dependent. The enhanced value of the low frequency dielectric permittivity is associated to ionic polarization and interfacial phenomena. The material is found to possess significantly high dielectric permittivity. The calculated ac conductivity suggests semiconducting behaviour for the Sr2Cu(Re0.69Ca0.31)O6.  相似文献   

10.
Dense composites were prepared through incorporating the dispersed Ni0.8Zn0.2Fe2O4 ferromagnetic particles into Sr0.5Ba0.5Nb2O6 ferroelectric matrix. Extrinsic dielectric relaxation and associated high permittivities of the materials are reported in the composites. We used an ideal equivalent circuit to explain electrical responses in impedance formalism. A Debye-like relaxation in the permittivity formalism was also found. Interestingly, real permittivity (ε′) of the sample containing 30% Ni0.8Zn0.2Fe2O4 shows obvious independence of the temperature at 100 kHz. Dielectric relaxation and high-ε′ properties of the composites are explained in terms of the Maxwell-Wagner (MW) polarization model.  相似文献   

11.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

12.
The transverse laser induced thermoelectric voltage effect has been investigated in tilted La0.5Sr0.5CoO3 thin films grown on vicinal cut LaAlO3 (1 0 0) substrates when films are irradiated by pulse laser at room temperature. The detected voltage signals are demonstrated to originate from the transverse Seebeck effect as the linear dependence of voltage on tilted angle in the range of small tilted angle. The Seebeck coefficient anisotropy ΔS of 0.03 μV/K at room temperature is calculated and its distorted cubic structure is thought to be responsible for this. Films grown on a series of substrates with different tilted angles show the optimum angle of 19.8° for the maximum voltage. Film thickness dependence of voltage has also been studied.  相似文献   

13.
The [TMA]2Zn0.5Cu0.5Cl4 hybrid material was prepared and its dielectric spectra were measured in the 10−1 Hz-106 Hz frequency range and 200-305 K temperature interval. The dielectric permittivity showed a ferroelectric-paraelectric phase transition at 293 K. Double relaxation peaks are observed in the imaginary part of the electrical modulus, suggesting the presence of grain and grain boundary in the sample. The frequency dependent conductivity was interpreted in term of Jonscher's law: σ(ω)=σdc+n. The temperature dependent of the dc conductivity (σdc) was well described by the Arrhenius equation: σdcT=σo×exp(−Ea/kT).  相似文献   

14.
The microwave dielectric properties of La(Mg0.5−xCaxSn0.5)O3 ceramics were examined with a view to their exploitation for wireless communications. The La(Mg0.5−xCaxSn0.5)O3 ceramics were prepared by the conventional solid-state method with various sintering temperatures. The La(Mg0.5−xCaxSn0.5)O3 ceramics contained Ca2SnO4, CaSnO3, and La2O3. The amount of Ca2SnO4 increased with increasing sintering temperature. However, the relative amount of CaSnO3 decreased with increasing sintering temperature. An apparent density of 6.52 g/cm3, a dielectric constant (εr) of 20.2, a quality factor (Q×f) of 80,500 GHz, and a temperature coefficient of resonant frequency (τf) of −79 ppm/°C were obtained for La(Mg0.4Ca0.1Sn0.5)O3 ceramics that were sintered at 1500 °C for 4 h.  相似文献   

15.
Ba[(Fe0.5Nb0.5)1−xTix]O3 (x=0.2,0.4,0.6,0.8,0.85,0.9 and 0.95) solid solutions were synthesized by a standard solid-state reaction technique. X-ray diffraction at room temperature and dielectric characteristics over a broad temperature and frequency range were evaluated systematically. The structure of Ba[(Fe0.5Nb0.5)1−xTix]O3 solid solutions changed from cubic to tetragonal with increasing x. A Debye-like dielectric relaxation following the Arrhenius law similar to that in Ba(Fe0.5Nb0.5)O3 was observed at lower temperature in the composition range 0.2≤x≤0.8, while the relaxor ferroelectric, diffused ferroelectric and normal ferroelectric behavior were observed for x=0.85,0.9 and 0.95, respectively. The process of the evolution of relaxor-like dielectric to ferroelectric suggested the changing from dilute polar micro-domains to polar micro-domains, polar micro/macro-domains and then polar macro-domains in the present ceramics.  相似文献   

16.
The effect of a bias field E on the value and temperature dependence of permittivity ɛ of ceramic samples of solid solutions 0.6NaNbO3-0.4 NaTaO3 (I), and 0.97[0.9NaNbO3-0.1Na0.5Bi0.5TiO3]-0.03LiNbO3 (II) possessing an anomalously large temperature hysteresis of ɛ(T) dependence is studied. The character of the dependences of both the height and the temperature of the ɛ(T) maximum on the field show that composition (I) has antiferroelectric properties, while composition (II) has ferroelectric properties. It is found that up to 8 kV/cm, the strength of the bias field has actually no effect on the width of the ɛ(T) temperature hysteresis of the compositions under study.  相似文献   

17.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

18.
Single-phase BaFe0.5Nb0.5O3 (BFN) ceramics were prepared by solid-state reaction method and were characterized by X-ray Diffraction (XRD) technique. Then, impedance spectroscopy measurements were conducted in a frequency range from 100 Hz to 1 MHz and in a temperature range from 293 to 600 K. Relaxation phenomena of non-Debye type have been observed in the BFN ceramics, as confirmed by the Cole–Cole plots. The higher values of ε′ at the lower frequencies are explained on the basis of the Maxwell–Wagner (MW) polarization model. Complex impedance analysis enables us to separate the contributions from grains and grain boundaries of our samples. We found that at higher temperatures grain boundary resistance is higher than grain resistance, irrespective of composition.  相似文献   

19.
La0.5Bi0.5MnO3 ceramics with a single phase were prepared by a solid-state reaction method, and their dielectric properties were characterized. Two dielectric relaxations with a giant dielectric constant were identified in the temperature range from 125 to 350 K. The electron hopping between Mn3+ and Mn4+ was found to be the origin of the dielectric relaxation at low temperatures (125–200 K) with an activation energy of 0.18 eV. The high temperature (200–350 K) dielectric relaxation can be attributed to the conduction.  相似文献   

20.
Magnetic properties of Nd0.5Sr0.5Mn1-x(Gax,Tix)O3 system (0.04≤x≤0.4) were investigated through magnetization and electron spin resonance (ESR) measurements. It was observed that a small amount of Ti substitution for Mn will destroy the charge-ordering (CO) phase completely and induce the cluster-spin-glass phase in the system, which displays a procedure of collapse of CO and of an enhancement of spin ordering (SO) phase. In contrast, the Ga substitution for Mn induces a melting of CO phase in the system. It was observed that with substitution the CO phase is suppressed gradually and the remanent CO phase is retained all the while, and withal, there is a co-existence of AFM CO phase and FM SO at low temperature. In addition, an abrupt rise of magnetization was observed in M-Tcurves. We attributed this abnormal phenomenon to a transition from canted AFM SO to FM SO in CO region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号