首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

2.
Transparent Ni2+-doped β-Ga2O3 glass–ceramics were synthesized. The nanocrystal phase in the glass–ceramics was identified to be β-Ga2O3 and its size was about 3.6 nm. It was confirmed from the absorption spectra that the ligand environment of Ni2+ ions changed from the trigonal bi-pyramid fivefold sites in the as-cast glass to the octahedral sites in the glass–ceramics. The broadband infrared emission centering at 1270 nm with full width at half maximum (FWHM) of more than 250 nm was observed. The fluorescence lifetime was about 1.1 μs at room temperature. The observed infrared emission could be attributed to the 3 T 2g (3 F )→3 A 2g (3 F ) transition of octahedral Ni2+ ions. It is suggested that the Ni2+-doped transparent β-Ga2O3 glass–ceramics with broad bandwidth and long lifetime have a potential as a broadband amplification medium. PACS 42.70.-a; 42.70.Ce; 81.40.Tv  相似文献   

3.
The effects of dopant on the electrochemical properties of spinel-type Li3.97M0.1Ti4.94O12 (M = Mn, Ni, Co) and Li(4-x/3)CrxTi(5-2x/3)O12(x = 0.1, 0.3, 0.6, 0.9, 1.5) were systematically investigated. Charge-discharge cycling were performed at a constant current density of 0.5 mA/cm2 between the cut-off voltages of 3.0 and 1.0 V, the experimental results showed that Cr3+ dopant improved the reversible capacity and cycling stability over the pristine Li4Ti5O12. The substitution of the Mn3+ and Ni3+ slightly decreased the capacity of the Li4Ti5O12. Dopants such as Co3+ to some extent worsened the electrochemical performance of the Li4Ti5O12.  相似文献   

4.
The [N(CH3)4][N(C2H5)4]ZnCl4 compound has been synthesized by a solution-based chemical method. The X-ray diffraction study at room temperature revealed an orthorhombic system with P21212 space group. The complex impedance has been investigated in the temperature and frequency ranges 420–520 K and 200 Hz–5 MHz, respectively. The grain interior and grain boundary contribution to the electrical response in the material have been identified. Dielectric data were analyzed using the complex electrical modulus M * for the sample at various temperature. The modulus plots can be characterized by full width at half height or in terms of a non-exponential decay function ϕ(t) = exp[(−t/τ) β ]. The detailed conductivity study indicated that the electrical conduction in the material is a thermally activated process. The variation of the AC conductivity with frequency at different temperatures obeys the Almond and West universal law.  相似文献   

5.
The non-doped and doped Nd3+ of Ca9.03Na1.08La0.62(VO4)7 crystals were grown by the Czochralski technique. The effective segregation coefficients of Na+ and Nd3+ ions in the crystal were measured to be about 0.5 and 1.1, respectively. The XPS analysis of Ca9.03Na1.08La0.62(VO4)7 crystal indicates that the vanadium in the crystal is a mixture of V4+ (1.46 at. %) and V5+ (98.54 at. %). The hardness of Nd:Ca9.03Na1.08La0.62(VO4)7 crystal is about 383.1 VDH. Nd:Ca9.03Na1.08La0.62(VO4)7 crystal exhibits similar thermal expansion coefficients along the a (11.2×10-6 K-1) and c (13.7×10-6 K-1) axes, indicating a low thermal expansion anisotropy (αca≈1.2). The qualitative frequency-doubling experiment shows that the doping of Na+ ion can help reduce the scattering of frequency-doubling light, and the intensity of SHG for Ca9.03Na1.08La0.62(VO4)7 crystal is found to be about 3.5 times as large as that of KDP. The polarized absorption and fluorescence spectra are analyzed based on Judd–Ofelt theory, which exhibits that the π-polarized absorption and stimulated emission cross sections are 6.07×10-20 cm2 with an FWHM 12.0 nm at 810 nm and 1.42×10-19 cm2 at 1069 nm, respectively. The fluorescence lifetime is 115 μs at room temperature. All the results indicate that Nd:Ca9.03Na1.08La0.62(VO4)7 crystal is a candidate of self-frequency doubling laser material. PACS 42.62.Fi; 42.70.Mp; 81.10.Fq  相似文献   

6.
Resonance modes that are due to magnetic excitations in the exchange-coupled subsystems of rare-earth ions (R = Nd3+, Sm3+, and Gd3+) and Fe3+ ions have been detected in submillimeter transmission spectra (0.1–0.6 THz) of RFe3(BO3)4 iron borate-multiferroic single crystals. The strong interaction between spin oscillations of the Fe and R subsystems has been revealed, which determines the behavior of the modes depending on the anisotropy of the exchange splitting of the ground doublet of the R ion. It has been shown that the intensities of coupled modes (contributions to the magnetic permeability) depend strongly on the difference between the g factors of Fe and R ions. This dependence makes it possible to determine the sign of the latter g factor. In particular, a noticeable intensity of exchange Nd modes in NdFe3(BO3)4 is due to an increase in their contribution at g ⊥, ‖Nd < 0, while in GdFe3(BO3)4 with g Gdg Fe ≈ 2, the Fe and Gd contributions compensate each other and the exchange (Gd) mode is not observed. In spite of the weak interaction of Sm ions with the magnetic field, SmFe3(BO3)4 exhibits resonance modes, which are attributed to the excitation of Sm ions through the Fe subsystem.  相似文献   

7.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

8.
Optical properties (photoluminescence and absorption) of Eu(bta)3(B) n (B = H2O or 1,10-phenanthroline) polycrystalline powders and fluoroacrylate polymers (FAPs) impregnated with these compounds using supercritical CO2 (SC CO2) were investigated. It was established that impregnation of Eu(bta)3phen into the FAPs using an SC CO2 solution was difficult to achieve. The type of B (ancillary ligand) and the polymer matrix were shown to influence the temperature quenching of photoluminescence of Eu3+ ions in the range 25–100°C. A comparative analysis of quantum yields (λex = 300 and 380 nm) and photoluminescence decay times (λex = 337.1 nm) for Eu(bta)3B n and for Eu(bta)3B n -doped FAPs was performed.  相似文献   

9.
Ho3+–Yb3+ co-doped Y2O3 nanocrystals were synthesized by firing hydroxy carbonate precursors. Yb3+-concentration-dependent up-conversion properties of Ho3+ in Y2O3 nanocrystals have been investigated. The relative intensity of up-converted red emission increases more quickly than that of the green and the near-infrared ones with the enhancement of the concentration of Yb3+. It is believed that the energy process 5 S 2 (5F4) (Ho) + 5 I 7 (Ho) →5 I 6 (Ho)+5 F 5 (Ho) plays an important role in the population of the 5 F 5 level of Ho3+. The result indicates that the intensity ratio of the green emission to the red one can be tuned by changing the sensitizer concentration. PACS 78.55.-m  相似文献   

10.
N. Hannachi  K. Guidara  F. Hlel 《Ionics》2011,17(5):463-471
The Ac electrical conductivity and the dielectric relaxation properties of the [(C3H7)4N]2Cd2Cl6 polycrystalline sample have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 Hz–5 MHz and 361–418 K, respectively. The purpose is to make a difference between the electrical and dielectric properties of the polycrystalline sample and single crystal. Besides, a detailed analysis of the impedance spectrum suggests that the electrical properties of the material are strongly temperature-dependent. Plots of (Z" versus Z') are well fitted to an equivalent circuit model consisting of a series combination of grains and grains boundary elements. Moreover, the temperature dependence of the electrical conductivity in the different phases follows the Arrhenius law and the frequency dependence of σ (ω) follows the Jonscher’s universal dynamic law. Furthermore, the modulus plots can be characterized by full width at half height or in terms of a nonexperiential decay function φ(t) = exp(t/t)β. Finally, the imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism.  相似文献   

11.
Polarized spectral properties of Er3+:NaGd(WO4)2 single crystal are reported. The crystal was grown by the Czochralski method. The Judd–Ofelt theory was applied to analyze the polarized absorption spectra and then calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios. Fluorescence decay curves of the 4 I 13/2, 4 I 11/2, and 4 S 3/2 multiplets for the Er3+ ions were measured. Stimulated emission cross-sections of the 4 I 13/24 I 15/2 transition obtained by the Fuchtbauer–Ladenberg formula and the reciprocity method were compared. Multi-phonon relaxation rates of the crystal were estimated. Green up-conversion fluorescence around 531 and 552 nm was observed, and the possible up-conversion mechanisms were proposed. PACS 78.20.-e; 42.70.Hj  相似文献   

12.
We have ground bulk samples to obtain nanoparticles of (Ga2S3)1–x (Eu2O3) x solid solutions, the sizes of which were determined using an atomic force microscope. The photoluminescence spectra of the nanoparticles were studied in the temperature interval 77–300 K. We have established the mechanisms for emission and transfer of energy from the matrix to the rare-earth ion, and we determined the Stokes shift (ΔS = 0.7 eV), the Huang–Rhys parameter (S = 16), and the optical phonon energy (ħ−ω = 23 meV).  相似文献   

13.
A simple and sensitive chemiluminescence (CL) method coupled with flow-injection technique is proposed to determine naproxen (NAP). The method is based upon the enhancement of the weak CL signal arising from the reaction of Ce(IV) and Na2S2O4 with Eu3+ to form the Eu3+-Ce(IV)-Na2S2O4 system. The CL intensity was significantly increased by the introduction of NAP into this system in the presence of silver nanoparticles (Ag NPs). Examination of the recorded UV–vis spectra and fluorescence spectra indicated that the energy of the intermediate SO2*, which originated from the redox reaction of Ce(IV) and Na2S2O4, was transferred to Eu3+ via NAP and that the process was accelerated by Ag NPs due to their catalytic activity. Under the optimum conditions, the CL intensity was increased with increasing NAP concentration and the correlation was linear (r = 0.9992) over the NAP concentration range of 1–420 ng mL−1. The limit of detection (LOD) was 0.11 ng mL−1 with a relative standard deviation (RSD) of 1.15% for 5 replicate determinations of 200 ng mL−1 NAP. The method was successfully applied to determine NAP in pharmaceutical and biological samples.  相似文献   

14.
This paper addresses the synthesis structural and electrochemical properties of LiFe0.5Mn0.5PO4 electrode materials for Li-ion batteries. The charge–discharge reaction of Li/LiPF6-EC–DEC/LiFe0.5Mn0.5PO4 cell carried out at the 1-C rate shows a capacity retention of 128 mAh/g. The local structure of the delithiated Li x Fe0.5Mn0.5PO4 phases have been studied by Fourier transform infrared spectroscopy and magnetometry. Spectral features indicate that the structure of the delithiated phase remains in the orthorhombic system. The compositional dependence of the magnetic moment is found to be in quantitative agreement with the theoretical value predicted for oxidation of M 2+ ions in the high spin state. Paper presented at the 11th Euro-Conference on Science and Technology of Ionics, Batz-sur-Mer, France, 9–15 Sept. 2007  相似文献   

15.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

16.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

17.
A Cu2+-doped single crystal of catena-trans-bis(N-(2-hydroxyethyl)-ethylenediamine) zinc(II)-tetra-m-cyanopaladate(II) [ZnPd(CN)4(C4H12N2O2)] complex has been investigated by electron paramagnetic resonance (EPR) technique at room temperature. EPR spectra indicate that Cu2+ ions substitute for magnetically equivalent Zn2+ ions and form octahedral complexes in [ZnPd(CN)4(C4H12N2O2)] hosts. The crystal field affecting the Cu2+ ion is nearly axial. The optical absorption studies show two bands at 322 nm (30864 cm−1) and 634 nm (15337 cm−1) which confirm the axial symmetry. The spin Hamiltonian parameters and the relevant wave function are determined.  相似文献   

18.
A precursor of TiO2–LiCo1/3Ni1/3Mn1/3O2 was prepared by electrostatic self-assembly method. The final product was obtained by heating the precursor at 400–450 °C for 4–6 h in air. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical tests were used to examine the structural, morphology, elementary valence, and electrochemical characteristics. XRD indicated that the TiO2-coated material can be indexed by α-NaFeO2 layered structure, which belongs to hexagonal-type space group R3m. XPS results confirmed the existence of TiO2 compound on the surface of the coated sample. The SEM image showed that the material had spherically porous morphology with the uniform size about 6 μm. The initial charge–discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 material was 168.8/160.0 mAh/g. After 60 cycles, the discharge capacity of the TiO2-coated LiCo1/3Ni1/3Mn1/3O2 sample was 147.0 mAh/g, and the coulombic efficiency was 94.0%. Compared with the uncoated sample, the electrochemical performance of TiO2-coated LiCo1/3Ni1/3Mn1/3O2 was improved.  相似文献   

19.
Optical absorption spectra of the trigonal crystal of TbFe3(BO3)4 in the vicinity of the 7F65D4 transition in a Tb3+ ion were studied as a function of temperature (2–70 K) and magnetic field strength (0–60 kOe) at 2 K. The splitting of the excited states of Tb3+ due to both the magnetic ordering of iron and an external magnetic field was determined. Abrupt splitting of the absorption lines of Tb3+ at temperature TN of the magnetic ordering of the subsystem of iron was revealed, suggesting that the nature of such splitting is not entirely magnetic.  相似文献   

20.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号