首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Optical absorption spectra of trigonal crystal TbFe3(BO3)4 have been studied in the region of 7F65D4 transition in Tb3+ ion depending on temperature (2–220 K) and on magnetic field (0–60 kOe). Splitting of the Tb3+ excited states, both under the influence of the external magnetic field and effective exchange field of the Fe-sublattice, have been determined. Landé factors of the excited states have been found. Stepwise splitting of one of the absorption lines has been discovered in the region of the Fe-sublattice magnetic ordering temperature. This is shown to be due to the abrupt change of equilibrium geometry of the local Tb3+ ion environment only in the excited state of the Tb3+ ion. In general, the magnetic ordering is accompanied by temperature variations of the Tb3+ local environment in the excited states. The crystal field splitting components have been identified. In particular, it has been shown that the ground state (in D 3 symmetry approximation) consists of two close singlet states of A 1 and A 2 type, which are split and magnetized by effective exchange field of the Fe-sublattice. Orientations of magnetic moments of the excited electronic states relative to that of the ground state have been experimentally determined in the magnetically ordered state of the crystal. A pronounced shift of one of absorption lines has been observed in the vicinity of the TbFe3(BO3)4 structural phase transition. The temperature interval of coexistence of the phases is about 3 K.  相似文献   

2.
The Zeeman effect in the 7 F 65 D 4 absorption band of the Tb3+ ion in the paramagnetic garnets Tb3Ga5O12 and Tb3Al5O12 was studied. The field dependences of the Zeeman splitting of some absorption lines are found to exhibit unusual behavior: as the magnetic field increases, the band splitting decreases rather than increases. Symmetry analysis relates these lines to 4f → 4f electron transitions of the doublet-quasi-doublet or quasi-doublet-doublet type, for which the field dependences of the splitting differ radically from the well-known field dependences of the Zeeman splitting for quasi-doublet-quasi-doublet or quasi-doublet-singlet transitions in a longitudinal magnetic field.  相似文献   

3.
The results of neutron diffraction studies of the La0.70Sr0.30MnO2.85 compound and its behavior in an external magnetic field are stated. It is established that in the 4–300 K temperature range, two structural perovskite phases coexist in the sample, which differ in symmetry (groups R[`3]cR\bar 3c and I4/mcm). The reason for the phase separation is the clustering of oxygen vacancies. The temperature (4–300 K) and field (0–140 kOe) dependences of the specific magnetic moment are measured. It is found that in zero external field, the magnetic state of La0.70Sr0.30MnO2.85 is a cluster spin glass, which is the result of frustration of Mn3+-O-Mn3+ exchange interactions. An increase in external magnetic field up to 10 kOe leads to fragmentation of ferromagnetic clusters and then to an increase in the degree of polarization of local spins of manganese and the emergence of long-range ferromagnetic order. With increasing magnetic field up to 140 kOe, the magnetic ordering temperature reaches 160 K. The causes of the structural and magnetic phase separation of this composition and formation mechanism of its spin-glass magnetic state are analyzed.  相似文献   

4.
Three different photomagnetic effects caused by ultraviolet light in paramagnetic crystals based on molecules of spiropyrans (Sp) Sp3Cr(C2O4)3 and SpI have been revealed and separated: (1) in the high-temperature range (30–300 K), the photomagnetic effect in Sp3Cr(C2O4)3 is determined by the charge transfer between chromium ions and spiropyran molecules; (2) in the low-temperature range (2 K), the photomagnetic effect in Sp3Cr(C2O4)3 is due to the photoisomerization of spiropyran molecules, the change in the crystal field, and the splitting of the levels of Cr3+ ions in zero field; and (3) in the temperature range 2–20 K, the generation of radiation-induced paramagnetic defects contributes to the magnetic moment of the organic sublattice Sp+.  相似文献   

5.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

6.
170Yb M?ssbauer spectroscopy, temperature dependent X-ray, magnetisation and specific heat data are presented in the hexagonal intermetallic YbAl3C3, in order to shed light on the isostructural transition occurring near 80 K and to investigate the electronic state of the Yb ion above and below the transition. In the low temperature phase, we find that there occurs an atomic rearrangement in the hexagonal unit cell, leading to a strong symmetry lowering at the Yb site. We show that no magnetic ordering of the Yb3+ moments occurs down to 0.04 K, and we discuss this finding in terms of 4f-conduction electron hybridisation and geometric frustration.  相似文献   

7.
The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60–320 nm is analyzed and the nature of the emission bands is discussed.  相似文献   

8.
High-frequency electron paramagnetic resonance (EPR) spectra of the KPb2Cl5:Tb3+ crystal have been investigated. Three types of spectra were observed in the frequency range of 74–200 GHz. The most intensive spectrum with the resolved hyperfine structure corresponded to transitions between sublevels of the159Tb3+ ground quasi-doublet with the zero-field splitting (ZFS) close to 48 GHz. Experimental results were analyzed by the exchange charge model of the crystal field affecting terbium ions in low-symmetry Pb2+ positions with the chlorine sevenfold coordination and the charge compensating vacancy in the nearest potassium site. The calculated values ofg-factors and ZFS were in agreement with the experimental data. The nature of a broad EPR line with ZFS of about 180 GHz and of additional weak EPR lines observed as satellites of the main Tb3+ lines was discussed.  相似文献   

9.
A new spintronics material with the Curie temperature above room temperature, the ZnSiAs2 chalcopyrite doped with 1 and 2 wt % Mn, is synthesized. The magnetization, electrical resistivity, magnetoresistance, and the Hall effect of these compositions are studied. The temperature dependence of the electrical resistivity follows a semiconducting pattern with an activation energy of 0.12–0.38 eV (in the temperature range 124 K ≤ T ≤ 263 K for both compositions). The hole mobility and concentration are 1.33, 2.13 cm2/V s and 2.2 × 1016, 8 × 1016 cm−3 at T = 293 K for the 1 and 2 wt % Mn compositions, respectively. The magnetoresistance of both compositions, including the region of the Curie point, does not exceed 0.4%. The temperature dependence of the magnetization M(T) of both compositions exhibits a complicated character; indeed, for T ≤ 15 K, it is characteristic of superparamagnets, while for T > 15 K, spontaneous magnetization appears which correspond to a decreased magnetic moment per formula unit as compared to that which would be observed upon complete ferromagnetic ordering of Mn2+ spins or antiferromagnetic ordering of spins of the Mn2+ and Mn3+ ions. Thus, for T > 15 K, it is a frustrated ferro- or ferrimagnet. It is found that, unlike the conventional superparamagnets, the cluster moment μ c in these compositions depends on the magnetic field: ∼12000–20000μB for H = 0.1 kOe, ∼52–55μB for H = 11 kOe, and ∼8.6–11.0μB at H = 50 kOe for the compositions with 1 and 2 wt % Mn, respectively. The specific features of the magnetic properties are explained by the competition between the carrier-mediated exchange and superexchange interactions.  相似文献   

10.
NaFeGe2O6 polycrystals were synthesized and their x-ray diffraction, magnetic, electrical, and Mössbauer characteristics were measured. It is established that this monoclinic compound is a dielectric with a temperature of antiferromagnetic ordering of 15 K. The Mössbauer spectrum at 300 K is a quadrupole doublet. The isomer shift is 0.40 mm/s, which is characteristic of the high-spin Fe3+ ion in the octahedral coordination. The quadrupole splitting is 0.34 mm/s, which indicates that the oxygen octahedron around the iron cation is distorted. The exchange interactions are estimated, and the crystal magnetic structure is discussed.  相似文献   

11.
The neodymium ferroborate NdFe3(BO3)4 undergoes an antiferromagnetic transition at T N = 30 K, which manifests itself as a λ-type anomaly in the temperature dependence of the specific heat C and as inflection points in the temperature dependences of the magnetic susceptibility χ measured at various directions of an applied magnetic field with respect to the crystallographic axes of the sample. Magnetic ordering occurs only in the subsystem of Fe3+ ions, whereas the subsystem of Nd3+ ions remains polarized by the magnetic field of the iron subsystem. A change in the population of the levels of the ground Kramers doublet of neodymium ions manifests itself as Schottky-type anomalies in the C(T) and χ(T) dependences at low temperatures. At low temperatures, the magnetic properties of single-crystal NdFe3(BO3)4 are substantially anisotropic, which is determined by the anisotropic contribution of the rare-earth subsystem to the magnetization. The experimental data obtained are used to propose a model for the magnetic structure of NdFe3(BO3)4.  相似文献   

12.
A series of phosphors Ca3La3(1-x)Tb3x(BO3)5 were synthesized by using a high-temperature solid-state reaction technique, and their VUV-vis luminescence properties were investigated. Strong host-related absorption is observed in the VUV region, and the f–d transitions of Tb3+ in the host lattice are assigned and discussed. The influence of both the doping concentration and the temperature on the spectroscopic properties that include the relative emission intensity and the decay time is investigated. PACS 61.72.Ww; 78.55.-m; 78.47.+p  相似文献   

13.
The magnetic properties of a synthesized dielectric NaFeGe2O6. polycrystal have been studied. The antiferromagnetic ordering of this compound below 15 K has been established. The Mössbauer spectrum at 300 K is a quadrupole doublet; it is characterized by an isomeric shift typical of the high-spin Fe3+ ion in the octahedral coordination and quadrupole splitting, which indicates distortion of the oxygen octahedron around the iron cation. Quasi-one-dimensionality of the sample magnetic structure is proved.  相似文献   

14.
Electron paramagnetic resonance (EPR) studies on a single crystal of diamagnetic compound La2Si2O7, potentially a phosphorescent/luminescent/laser material, with the Gd3+ ion substituting for the La3+ ion, were carried out at X-band (9.61 GHz) over the 4–295 K temperature range. The asymmetry exhibited by the Gd3+ EPR line positions for the orientations of the external magnetic field about the magnetic Z- and Y-axes in the ZY-plane was ascribed to the existence of monoclinic site symmetry at the site of the Gd3+ ion, as confirmed by the significant values of the spin Hamiltonian parameters g YZ , b 2 −1, b 4 m (m = 1, 3), b 6 m (m = 1, 3, 5), estimated by fitting all EPR line positions observed at room temperature for the orientation of the magnetic field in the magnetic ZX- and ZY-planes using a rigorous least-squares fitting procedure. At 8 K measurements were only carried out for orientation of B in the magnetic ZX-plane, due to difficulty in orientation of the crystal inside the cryostat, enabling estimation of all spin Hamiltonian parameters b n m except those characterized by negative m values and g YZ . The absolute sign of the zero-field splitting parameter b 2 0 was determined to be negative from the relative intensities of the lines at 8 K. Authors' address: Sushil K. Misra, Physics Department, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8, Canada  相似文献   

15.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

16.
We studied the optical properties of antiferromagnetic ZnCr2Se4 by infrared spectroscopy up to 28,000 cm-1 and for temperatures from 5 to 295 K. At the magnetic phase transition at 21 K, one of the four phonon modes reveals a clear splitting of 3 cm-1 as a result of spin-phonon coupling, the other three optical eigenmodes only show shifts of the eigenfrequencies. The antiferromagnetic ordering and the concomitant splitting of the phonon mode can be suppressed in a magnetic field of 7 T. At higher energies we observed a broad excitation band which is dominated by a two-peak-structure at about 18,000 cm-1 and 22,000 cm-1, respectively. These energies are in good agreement with the expected spin-allowed crystal-field transitions of the Cr3+ ions. The unexpected strength of these transitions with d-d character is attributed to a considerable hybridization of the selenium p with the chromium d orbitals.  相似文献   

17.
Resonance modes that are due to magnetic excitations in the exchange-coupled subsystems of rare-earth ions (R = Nd3+, Sm3+, and Gd3+) and Fe3+ ions have been detected in submillimeter transmission spectra (0.1–0.6 THz) of RFe3(BO3)4 iron borate-multiferroic single crystals. The strong interaction between spin oscillations of the Fe and R subsystems has been revealed, which determines the behavior of the modes depending on the anisotropy of the exchange splitting of the ground doublet of the R ion. It has been shown that the intensities of coupled modes (contributions to the magnetic permeability) depend strongly on the difference between the g factors of Fe and R ions. This dependence makes it possible to determine the sign of the latter g factor. In particular, a noticeable intensity of exchange Nd modes in NdFe3(BO3)4 is due to an increase in their contribution at g ⊥, ‖Nd < 0, while in GdFe3(BO3)4 with g Gdg Fe ≈ 2, the Fe and Gd contributions compensate each other and the exchange (Gd) mode is not observed. In spite of the weak interaction of Sm ions with the magnetic field, SmFe3(BO3)4 exhibits resonance modes, which are attributed to the excitation of Sm ions through the Fe subsystem.  相似文献   

18.
The preparation of pyridine functionalized TbF3 nanoparticles are described in this report. Synthesized nanoparticles were characterized using the TEM, UV/Vis, FTIR and photoluminescence spectroscopy. TEM micrograph reveals the nanorod shaped, uniform in size with a particles size in the range of 20–30 nm. FTIR spectrum shown characteristic absorption bands of pyridine and a small intensity band at 411 cm−1 corresponding metal nitrogen ν(Tb–N) bonding. Uv-vis spectrum shown the characteristic absorption transitions of Tb3+ ion. A strong emission transition at 540 nm (5D47F5) was observed on excite by visible light at 414 nm.  相似文献   

19.
The 90° reorientation of Er3+ spins in ErFeO3 have been directly observed using optical spectroscopy. The peculiarities of the absorption spectrum of ErFeO3 in the region of the 4 I 15/24 F 9/2 transition of the Er3+ ion in the temperature range of ac-spin reorientation have been studied. It is shown that the spin reorientation phase transition (SRPT) is accompanied by splitting of the ground and excited states into Kramers doublets in the iron exchange field. This fact is a direct evidence of purely magnetic origin of SRPT. The experimental results were used to analyze the magnetic properties of ErFeO3. This analysis showed that the order of magnitude of the magnetic moment, its variation in the SRPT region, and the existence of T comp can be interpreted in terms of the single-ion model, taking into account the influence of the crystal field and the molecular field produced by the iron subsystem ions.  相似文献   

20.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号