首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Magnetic measurements were made using pure YBCO and Zn doped YBa2(Cu1?xZnx)3O7?σ. Single crystals with Zn concentration of 0.5%, 1.5%, 3.0% and 4.3%. The magnetic hysteresis loops for these samples were measured in the temperature range 0.1 ? T/Tc ? 0.96 under magnetic fields of 5 T using SQUID. It was found that the critical current density Jc increased for low Zn content samples up to 3% Zn concentration compared to pure YBCO sample and decreased for the higher Zn content samples. These values varied consistently when compared at magnetic fields of 1 T and 3 T. Moreover Zn doped samples showed significant values of Jc in the temperature range of 0.7–0.9Tc, close to critical temperature compared to pure YBCO sample. The irreversibility field Hirr was also enhanced in this temperature range showing consistent decrease with increase of Zn concentration. The peak field Hp above Hc1 and irreversibility field Hirr, both show power law dependence of the form H = m1(1 ? T/Tc)m2 in the temperature range of 0.75–0.96Tc. The values of parameter m2 increased from 1.44 to 1.95 for the samples up to 3% Zn content and decreased to 1.37 for higher Zn contents. The ratio Hirr/Hp was found to be 3–4 for the lower Zn content samples and was 7–8 for the sample with high Zn content indicating more disorder for higher Zn content samples. The region between peak field Hp and irreversibility field Hirr was broadened with the increase of Zn concentration. The strong effect of Zn substitution in modifying behavior of these samples even at elevated temperatures is possibly due to the changes in the anisotropy of our samples with the increase of Zn concentration and also due to the locally induced changes in magnetic moments by Zn substitution.  相似文献   

2.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

3.
A systematic study of the intergranular properties of (Bi,Pb)2Sr2Ca2Cu3Oy (Bi2223) polycrystalline samples has been done using the electrical resistivity and Ac susceptibility techniques. In this project, we have prepared a series of Bi2223 samples with different sintering temperature. The XRD results show that by increasing sintering temperature up to 865 °C the Bi2212 phase fraction decrease. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of weak links and consequently reduces the intergranular critical current densities. Analysis of the temperature dependence of the Ac susceptibility near the transition temperature (Tc) has been done employing Bean's Critical State Model. The observed variation of intergranular critical current densities (Jc) with temperature indicates that the weak links are changed from superconductor–normal metal–superconductor (SNS) for well-coupled sample to superconductor–insulator–superconductor (SIS) type of junctions for the sample with high Bi2212 phase fraction.  相似文献   

4.
We report the effects of BSO addition on the crystallinity, texture, and the field dependency of critical current density (Jc) of GdBCO coated conductors (CCs) prepared by pulsed laser deposition (PLD). Undoped and BSO-doped GdBCO films showed only c-axis oriented growth, and the incorporated BSO nanorods exhibited epitaxial relationship with the GdBCO matrix. In comparison with undoped film, BSO-doped GdBCO film exhibited greatly enhanced Jc and higher pinning force densities in the entire field region of 0–5 T (H//c) at 77 and 65 K. The BSO-doped GdBCO film showed the maximum pinning force densities (Fp) of 6.5 GN/m3 (77 K, H//c) and 32.5 GN/m3 (65 K, H//c), ~2.8 times higher than those of the undoped sample. Cross-sectional TEM analyses exhibited nano-structured BSO nanorods roughly aligned along the c-axis of the GdBCO film, which are believed effective flux pinning centers responsible for strongly improved critical current densities in magnetic fields.  相似文献   

5.
YBa2Cu3O7?x (Y123) films with quantitatively controlled artificial nanoprecipitate pinning centers were grown by pulsed laser deposition (PLD) and characterized by transport over wide temperature (T) and magnetic field (H) ranges and by transmission electron microscopy (TEM). The critical current density Jc was found to be determined by the interplay of strong vortex pinning and thermally activated depinning (TAD), which together produced a non-monotonic dependence of Jc on c-axis pin spacing dc. At low T and H, Jc increased with decreasing dc, reaching the very high Jc  48 MA/cm2 ~20% of the depairing current density Jd at 10 K, self-field and dc  10 nm, but at higher T and H when TAD effects become significant, Jc was optimized at larger dc because longer vortex segments confined between nanoprecipitates are less prone to thermal fluctuations. We conclude that precipitates should extend at least several coherence lengths along vortices in order to produce irreversibility fields Hirr(77 K) greater than 7 T and maximum bulk pinning forces Fp,max(77 K) greater than 7–8 GN/m3 (values appropriate for H parallel to the c-axis). Our results show that there is no universal pin array that optimizes Jc at all T and H.  相似文献   

6.
In pulsed laser deposition of YBa2Cu3O7?δ films, defect introduction into the films tends to anisotropically improve the pinning along the H||c direction due to the columnar growth mode of the process. In Eu-substituted samples, however, even though an increase in critical current density (Jc) in the H||c direction was observed for low fields (H = 0.2 T), the improvement was more notable for the H||ab-plane at both low and higher fields. Herein we present detailed TEM microstructural studies to understand these new trends in Jc(H), which are markedly different than flux pinning increases achieved with other methods, for example, with nanoparticle additions. Threading dislocations, observed in the Eu-substituted samples along the c-axis, account for Jc enhancement with H||c at low field. The enhanced ab-planar pinning in the Eu-substituted samples is attributed to the extensive bending of the {0 0 1} lattice planes throughout the film, and the crystal lattice defects with excess Cu–O planes, that were effective in increasing the Jc for H||ab at both low and high fields.  相似文献   

7.
Using Pulsed Laser Deposition we have fabricated thick quasi-multilayers composed of incomplete layers of PrBa2Cu3Ox (PrBCO) nano-dots and layers of YBa2Cu3O7?δ (YBCO). The number of such sequences was between 2 and 6, with the thickness of individual YBCO layers between 565 and 885 nm, and total thickness between 1.13 and 5.31 μm. For the thinner quasi-multilayer, DC magnetization studies showed an increase in the critical current density Jc at all fields in comparison with a pure YBCO reference sample, while the thicker samples showed an increased Jc only in high fields. We have also investigated the frequency dependence of Jc from AC susceptibility studies and found that the pinning potential is well described by a logarithmic dependence on current density. Pinning potentials in PrBCO/YBCO quasi-multilayers also proved to be higher than in the reference sample at high fields. From angle-dependent transport measurements we have found indications of strong pinning centres induced by the (PrBCO) nano-dots, both isotropic and c-axis correlated.  相似文献   

8.
We report synthesis, structural and magnetic (DC and AC) properties of Boron substituted MgCNi3 superconductor. A series of polycrystalline bulk samples Mg1.2C1.6?xBxNi3 (x=0.0, 0.08 and 0.16) is synthesized through standard solid-state reaction route, which are found to crystallize in cubic perovskite structure with space group Pm3m. Rietveld analysis of observed XRD data show that lattice parameters expand from a=3.8106 (4) Å for pure, to 3.8164 (2) Å and 3.8173 (5) Å for 5% and 10% Boron substituted samples respectively. DC magnetization exhibited superconducting transition (Tc) at around 7.3 K for pure sample, and the same decreases slightly with Boron substitution. The lower critical field (Hc1) at 2 K is around 150 Oe for pure sample, which increases slightly with Boron substitution. For pure sample the upper critical field (Hc2) being determined from AC susceptibility measurements is 11.6 kOe and 91.70 kOe with 50% and 90% diamagnetism criteria respectively, which decreases to 5.57 kOe and 42.5 kOe respectively for 10% Boron substituted sample. 10% Boron substitution at Carbon site has decreased both the Hc2 and Tc. On the other hand lower critical field (Hc1) at 2 K is slightly increased from around 150 Oe for pure sample, to 200 Oe for 10% Boron substituted sample. Seemingly, the Carbon site Boron substitution induced disorder though has increased slightly the Hc1 but with simultaneous decrease in superconducting transition temperature (Tc) and upper critical field (Hc2). The high relative proportion of Ni in studied MgCNi3 suggests that magnetic interactions are important and non-oxide perovskite structure make it interesting.  相似文献   

9.
The critical current density Jc of some of the superconducting samples, calculated on the basis of the Bean’s model, shows negative curvature for low magnetic field with a downward bending near H = 0. To avoid this problem Kim’s expression of the critical current density, Jc = k/(H0 + H), where Jc has positive curvature for all H, has been employed by connecting the positive constants k and H0 with the features of the hysteresis loop of a superconductor. A relation between the full penetration field Hp and the magnetic field Hmin, at which the magnetization is minimum, is obtained from the Kim’s theory. Taking the value of Jc at H = Hp according to the actual loop width, as in the Bean’s theory, and at H = 0 according to an enhanced loop width due to the local internal field, values of k and H0 are obtained in terms of the magnetization values M+(?Hmin), M?(Hmin), M+(Hp) and M?(Hp). The resulting method of estimating Jc from the hysteresis loop turns out to be as simple as the Bean’s method.  相似文献   

10.
The co-doped MgB2 bulk samples have been synthesized using an in situ reaction processing. The additives is 8 wt.% SiC nano powders and 10 wt.% [(CH2CHCOO)2Zn]n poly zinc acrylate complexes (PZA). A systematic study was performed on samples doped with SiC or PZA and samples co-doped with both of them. The effects of doping and co-doping on phase formation, microstructure, and the variation of lattice parameters were studied. The amount of substituted carbon, the critical temperature (Tc) and the critical current density (Jc) were determined. The calculated lattice parameters show the decrease of the a-axis, while no obvious change was detected for c-axis parameter in co-doped samples. This indicates that the carbon was substituted by boron in MgB2. The amount of substituted carbon for the co-doped sample shows an enhancement compared to that of the both single doped samples. The co-doped samples perform the highest Jc values, which reaches 3.3 × 104 A/cm2 at 5 K and 7 T. It is shown that co-doping with SiC and organic compound is an effective way to further improve the superconducting properties of MgB2.  相似文献   

11.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

12.
The effects of carbon nano-tubes (CNTs) on the crystal structure and superconducting properties of YBa2Cu3O7?δ (Y-123) compound were studied. Samples were synthesized using standard solid-state reaction technique by adding CNT up to 1 wt% and X-ray diffraction data confirm the single phase orthorhombic structure for all the samples. Current–voltage measurements in magnetic fields up to 9 T were used to study the pinning energy UJ and critical current density Jc as a function of magnetic field at fixed temperature. We find that while Tc does not change much with the CNT doping (91–92 K), both UJ and Jc increase systematically up to 0.7 wt% CNT doping in a broad magnetic field ranges between 0.1 and 9 T and Jc in the 0.7 wt% CNT doped sample is at least 10 times larger than that of the pure Y-123. The scanning electron microscope image shows that CNTs are forming an electrical-network between grains. These observations suggest that the CNT addition to the Y-123-compounds improve the electrical connection between superconducting grains to result in the Jc increase.  相似文献   

13.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

14.
Low-field ac measurements of magnetic susceptibility of YBa2Cu3O7 high-temperature superconducting thin film were carried out over a wide range of temperatures and ac magnetic field amplitudes. A strong field dependence of the real χ′ and imaginary χ″ components was observed. The field dependence of the imaginary component is used to extract the temperature dependence of the critical current density in the sample using the critical state model. The exponent β of the power law relation Jc  (1 ? T/Tc)β was determined from ac-susceptibility data and different values were found. Experimental results are compared with predictions of some existing theoretical models describing the ac response of superconducting thin film in perpendicular ac field.  相似文献   

15.
The 5d transition metal W was added into the MgB2 superconductor. The Mg, B and W were sintered at 1173 K for 30 min under H2/Ar atmosphere in the electric furnace. The Wx(MgB2)1?x samples were prepared in the W concentration range of 0 ? x ? 0.05. Temperature and field dependences of magnetization were measured by the SQUID magneto-meter. The field and x dependences of Jc at 20 K were analyzed by the extended critical state model. The enhancement of Jc became maximum for the x = 0.02 sample.  相似文献   

16.
CuBa2Ca3Cu4O12−y (Cu:1234) high-temperature superconductors (HTS) doped with up to 2% Zn were grown using the high-pressure synthesis technique. Magnetization loops of the samples were measured at various temperatures between 5 and 77.3 K and magnetic fields up to 14 T. Critical current densities Jc of the samples were estimated using the critical state model. The results show that Zn-induced pinning centers increase Jc of Cu:1234 several times, depending on field and temperature. From the experimentally determined field-temperature region in which a higher Zn concentration lead to a higher Jc, we suggest the existence of a cross-over from quite efficient, extended (in the c-axes direction) pinning centers to point-like (inefficient) pinning centers at a certain temperature, depending on field. This effect can be attributed to the fact that, unlike other HTS, in Cu:1234 there is a second critical temperature Tc2 of about 70–80 K (in zero field, and 50–60 K in 15 T), related to the over-doping of pyramidal basal plane (outer CuO2 plane).  相似文献   

17.
The intrinsic pinning properties of FeSe0.5Te0.5, which is a superconductor with a critical temperature Tc of approximately 14 K, were studied through the analysis of magnetization curves obtained using an extended critical state model. For the magnetization measurements carried out with a superconducting quantum interference device (SQUID), external magnetic fields were applied parallel and perpendicular to the c-axis of the sample. The critical current density Jc under the perpendicular magnetic field of 1 T was estimated using the Kimishima model to be equal to approximately 1.6 × 104, 8.8 × 103, 4.1 × 103, and 1.5 × 103 A/cm2 at 5, 7, 9, and 11 K, respectively. Furthermore, the temperature dependence of Jc was fitted to the exponential law of Jc(0) × exp(?αT/Tc) up to 9 K and the power law of Jc(0) × (1 ? T/Tc)n near Tc.  相似文献   

18.
The irreversibility lines (IL) for series of Y1?xCaxBa2Cu3O7?δ (x = 0.025; 0.10 and 0.20) polycrystalline samples with different overdoping were investigated. The irreversibility fields were determined from measurements of third harmonics AC susceptibility as a function of DC field at constant temperature. For the weakly overdoped sample (with x = 0.025) Hirr(77 K) is about 7 T, which is higher than the previously reported for the non-substituted one. The irreversibility line behavior is typical for glass–liquid phase transition and this is confirmed by transport measurements. On increasing the overdoping the irreversibility fields were shifted towards lower temperatures. The behavior of Hirr(T) for the highly overdoped sample (with x = 0.20) is influenced by the surface barrier effect. It is supposed that in highly overdoped specimen the process of phase separation is enhanced and the Fermi clusters grow in size. This leads to a suppression of the bulk pinning and to a domination of the surface barrier effects and flux creep as well. As a confirmation, the obtained quadratic Jc(T) dependences were presented demonstrating the existence of S–N–S type inter-grain joints in the highly overdoped samples.  相似文献   

19.
The magnetic relaxation processes in two ferrofluids with Mn0.4Zn0.6Fe2O4 (sample F1) and Mn0.6Fe0.4Fe2O4 (sample F2) mixed ferrite particles, dispersed in n-decan and kerosene, respectively, are investigated through the determination of components χ′ and χ′′ of the complex magnetic susceptibility in the range of (2–30) MHz. The values of the saturation magnetization of the two ferrofluids are M=5.28 kA/m for sample F1 and M=10.99 kA/m for sample F2. A maximum of the imaginary component χ′′ was observed for both samples at frequencies of tens MHz. This maximum was assigned to relaxation processes of Néel type.The effective anisotropy constant K of the particles from the studied samples was evaluated, using both static and dynamic measurements and the values were found to be K1=6.12×103 J m−3 for the ferrofluid F1, and K2=5.60×103 J m−3 for the ferrofluid F2. From ferromagnetic resonance measurements, and based on the theoretical values computed for the Lande factor (g), the effective anisotropy constants for the mixed ferrite particles in the studied ferrofluids and the anisotropy field values were determined using a new method. The values obtained in this way for the anisotropy constants K1 and K2 are compared to the ones determined from magnetic relaxation measurements.  相似文献   

20.
The YBCO films with BaSnO3 (BSO) particles were prepared on LAO (0 0 1) substrates by metal organic deposition using trifluoroacetates (TFA-MOD) via introducing SnCl4 powders into the YBCO precursor solution. It was found that with the increase of the SnCl4 contents, the slower decomposition and higher temperature for nucleation during the reaction were requested compared to that of pure YBCO film. The YBCO films with different contents of Sn with dense surface and well c-alignment were obtained under optimized heat treatment, and the BaSnO3 phases were detected by XRD analysis. Litter effect of BSO particles on the Tc and Jc values of YBCO films was found. All YBCO films with BSO particles had Tc values over 90 K and Jc values over 1 MA/cm2. A significant enhancement of Jc was observed for YBCO films with BSO particles compared to that of pure YBCO film by the field dependence of Jc values. The best property was obtained for YBCO film with 6 mol.% Sn at 77 K under magnetic field. The results showed that the Jc value of YBCO film with 6 mol.% Sn was enhanced by a factor of 2 in 2 T, and over a factor of 10 beyond 4 T compared to that of pure YBCO film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号