首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A new and simple method has been developed for the determination of a group of four benzimidazole pesticides (carbendazim/benomyl, thiabendazole, and fuberidazole), a carbamate (carbaryl), and an organophosphate (triazophos), together with two of their main metabolites (2-aminobenzimidazole, metabolite of carbendazim/benomyl, and 1-naphthol, metabolite of carbaryl) in soils. First, an ultrasound-assisted extraction (UAE) was performed, followed by evaporation and reconstitution in water. Then, extraction and preconcentration of the analytes was accomplished by two-phase hollow-fiber liquid-phase microextraction (HF-LPME) using 1-octanol as extraction solvent. Parameters that affect the extraction efficiency in HF-LPME technique (organic solvent, pH of the sample, extraction time, stirring speed, temperature, and ionic strength) were deeply investigated. Optimum HF-LPME conditions involved the use of a 2.0 cm polypropylene fiber filled with 1-octanol to extract 10 mL of an aqueous soil extract at pH 9.0 containing 20% (v/v) of NaCl for 30 min at 1440 rpm. Separation and quantification was achieved by HPLC with fluorescence detection (FD). The proposed optimum UAE-HF-LPME-HPLC-FD methodology provided good calibration, precision, and accuracy results for two soils of different physicochemical properties. LODs were in the range 0.001-6.94 ng/g (S/N = 3). With the aim of extending the validation, the HF-LPME method was also applied to different types of waters (Milli-Q, mineral and run-off), obtaining LODs in the range 0.0002-0.57 μg/L.  相似文献   

2.
Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.  相似文献   

3.
Hu Y  Li J  Li G 《Journal of separation science》2011,34(10):1190-1197
The preparation, characteristics and application of a sorptive stir bar coated with molecularly imprinted polymer (MIP) using triadimefon as the template molecule are described here. Raw glass capillary was coated with MIP through chemical bonding. The synthesis method was effective and reproducible with the batch-to-batch RSD within 7.8%. Scanning electron micrographs of the stir bar revealed a highly porous coating with average thickness of 15 μm. The synthesized stir bar was proved to be highly stable in most of the solvent for use. Extraction performance showed the fabricated stir bar has excellent molecular recognition abilities for triadimefon and the structure-related compounds, such as triadimenol, diniconazole, flutriafol, hexaconazole, tebuconazole, paclobutrazol and uniconazole, and thus can be applied for simultaneous determination of these triazole fungicides from complex samples by coupling with high-performance liquid chromatography. The variables that influence extraction were optimized with 10.0 μg/L standard solutions of triazole fungicides, and the analytical method was established for the determination of triazole fungicides in soil. The detection limits were in the range of 0.14-0.34 μg/L, and the recoveries were from 86.7 to 114.6% for spiked soil sample.  相似文献   

4.
Di‐(2‐ethylhexyl)phthalate (DEHP) was determined in environmental samples such as water and soil. DEHP was extracted from water samples using SPE, whereas for soils pressurized liquid extraction was applied as extraction method, using hexane/acetone (1:1, v/v) as extractant solvent. The use of HPLC coupled to MS provides the basis of the selective determination of DEHP in the analyzed samples. The extraction procedures were validated and good results were found. Recoveries were ranged from 86.0 to 99.8% with RSD lower than 18% and LODs were 0.02 mg/kg and 0.03 μg/L for soils and water, respectively. Finally, the optimized methods were applied to the analysis of real samples and DEHP was not found above the LOQ (0.05 mg/kg) in soil samples whereas it was detected in water samples at concentrations ranging between 0.19 to 0.88 μg/L.  相似文献   

5.
江静  邵晓玲  常真  吴向阳  张祯 《分析化学》2012,40(8):1257-1261
三氯生(5 Chloro-2-(2,4-dichlorophenoxy) phenol,TCS)是一种新型环境水体污染物,具有潜在的生态与健康风险,因此发展合适的分析方法来检测水环境中这类化合物极其必要.本研究以1-辛基-3-甲基咪唑六氟磷酸离子液体( [C8 MIM][PF6])为萃取剂,基于中空纤维的离子液体液液微萃取方法,结合HPLC/UV用于环境水样中TCS的分析测定;通过对各参数(萃取剂、供体相的体积、供体相pH值、离子强度、萃取时间等)的优化在最优条件下(样品相体积为50 mL,pH值2,盐浓度为0.2 mol/L,200 r/min振荡萃取8 h),获得了较高的富集倍数(907倍)、较低的检出限(0.05 μg/L,RSD=7.4%,n=6)和较好的线性范围(0.1~100 μg/L);以4种环境水样加标实验对方法的准确性进行评估,其回收率可达94.2%~108.5%(RSD=5.5%~8.0%,n=6);本方法可广泛应用于环境水体中痕量TCS的分析检测.  相似文献   

6.
魏丹  国明  吴慧珍  张菊 《色谱》2020,38(8):945-952
建立了加速溶剂萃取(ASE)、磁固相萃取净化(MSPE)、气相色谱-质谱(GC-MS)测定土壤中多环芳烃和有机氯残留的方法。ASE萃取溶剂为丙酮-正己烷(1:1,v/v),萃取温度为100℃,萃取压力为11.032 MPa,加热时间为5 min,静态萃取时间为5 min,循环萃取3次,冲洗体积为60%萃取池体积,氮气吹扫100 s。然后采用室温制备法自制ZIF-8/nZVI磁性材料用于净化萃取液,将净化液浓缩定容后进行GC-MS测定。多环芳烃和有机氯的线性范围为5~200 μg/kg,线性相关系数(r2)均大于0.99;目标物的检出限(LOD,S/N=3)为0.04~1.21 μg/kg。所建方法成功用于土壤样品中16种多环芳烃和23种有机氯的测定,在3个加标水平下得到的加标回收率为63.9%~112.1%,相对标准偏差(RSD)为0.4%~26.2%。研究结果表明,该方法具有灵敏度高、重现性好、回收率高等特点,适用于土壤中多环芳烃和有机氯残留的检测。  相似文献   

7.
This paper presents two procedures for the determination of four selective serotonin reuptake inhibitors (citalopram, paroxetine, fluoxetine, and sertraline) and one metabolite (norfluoxetine) in sewage sludge utilizing three-phase hollow fiber liquid-phase microextraction (HF-LPME). First, direct HF-LPME was used for extraction, clean-up, and preconcentration. The pharmaceuticals were extracted from slurry samples into an organic phase and then back-extracted into an aqueous phase in the lumen of the hollow fiber. Second, a procedure combining pressurized hot water extraction and HF-LPME for clean-up and preconcentration was developed for the same analytes and matrix. The extracts were subsequently analyzed by liquid chromatography-mass spectrometry. For direct HF-LPME, limits of detection were between 1 and 12 ng g(-1) (dry weight) and the relative standard deviation (RSD) values were 3-12%. For the second method, limits of detection were approximately 6 ng g(-1) for all the compounds and RSD values were 8-12%. The methods were validated by comparison of results for the same samples. Sewage sludge from a Swedish wastewater treatment plant was analyzed by both methods; average concentrations were similar for citalopram, paroxetine, and fluoxetine with values of approximately 530, 40, and 200 ng g(-1) , respectively.  相似文献   

8.
In the present study, a three phase-based hollow fiber protected liquid-phase microextraction (HF-LPME) method combined with high-performance liquid chromatography (HPLC) for the determination of salicylates in environmental waters was developed. The HF-LPME procedure was optimized by an L16(45) orthogonal array experimental design (OAD) with five factors at four levels. Under the optimal extraction condition (pHs of donor and receiving phases of 3.0 and 6.2, respectively, extraction time of 45 min, stirring speed of 1000 rpm, and salt addition of 20% (w/v)), salicylates could be determined in a linear range from 0.025 to 1.0 μg mL−1 with a good correlation (r2 > 0.9930). The limits of detection (LODs) ranged between 0.6 ng mL−1 and 1.2 ng mL−1 for the target analytes. The relative standard deviations (RSDs) of intra-day and inter-day were in the range of 0.64–14.58% and 0.16–15.45%, respectively. This procedure afforded a convenient, sensitive, accurate and cost-saving operation with high extraction efficiency for the model analytes. The method was applied satisfactorily to the determination of salicylates in two environmental waters.  相似文献   

9.
Yang ZH  Lu YL  Liu Y  Wu T  Zhou ZQ  Liu DH 《Journal of chromatography. A》2011,1218(40):7071-7077
A novel sample pre-treatment technique, based on vortex-assisted surfactant-enhanced-emulsification liquid-liquid microextraction (VSLLME), followed by gas chromatography-flame photometric detection (GC-FPD) has been developed for the determination of seven organophosphorus pesticides (OPPs) in wine and honey samples. In the VSLLME method, the extraction solvent was dispersed into the aqueous samples by the assistance of vortex agitator. Meanwhile, the addition of a surfactant, which was used as an emulsifier, could enhance the speed of the mass-transfer from aqueous samples to the extraction solvent. The main parameters relevant to this method were investigated and the optimum conditions were established: 15 μL chlorobenzene was used as extraction solvent, 0.2 mmol L(-1) Triton X-114 was selected as the surfactant, the extraction time was fixed at 30s, 3% sodium chloride was added and the extraction process was performed under the room temperature. Under the optimum conditions, limits of detections (LODs) were varied between 0.01 and 0.05 μg L(-1). The relative standard deviation (RSD, n=6) ranged from 2.3% and 8.9%. The linearity was obtained by five points in the concentration range of 0.1-50.0 μg L(-1). Correlation coefficients (r) varied from 0.9969 to 0.9991. The enrichment factors (EFs) were in a range of 282-309. Finally, the proposed method has been successfully applied to the determination of target analytes in real samples. The recoveries of the target analytes in wine and honey samples were between 81.2% and 108.0%.  相似文献   

10.
A new method was developed for the determination of trace compounds in water samples using ultrasonic-enhanced hollow fiber liquid-phase microextraction (U-HF-LPME). The ultrasonic radiation, which produces mechanical vibration and ultrasonic cavitation, could be used for accelerating the diffusion mass transfer process. Thus, ultrasonic was introduced into the HF-LPME procedure to enhance the mass-transfer rate during the aqueous and extraction solvent phases. Experimental parameters such as the extraction solvent, the extraction time, the ultrasonic frequency and power, the extractant volume, and ionic strength of the sample were assessed and optimized. Under optimal conditions, HF-LPME was achieved within 10 min. The high enrichment factor in the range of 120-666 and a good relative recovery in the range of 97-103% were evaluated with the relative standard deviations (RSDs, n = 5) of 0.3-7.0%. The limit of detection was in the range of 0.8-3.0 μg/L. The method was applied to the analysis of groundwater, lake water, and seawater. The results showed that the method can determine trace benzene derivatives in real samples with RSD values of 1.1-4.2%. The results demonstrated that U-HF- LPME is a rapid, accurate, and effective sample preparation method, and could be successfully applied for the determination of trace compounds in analytical chemistry.  相似文献   

11.
Two methods based on hollow fiber liquid phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME), have been critically compared for the analysis of organosulfur pesticides (OSPs) in environmental and beverage samples by gas chromatography-flame photometric detection (GC-FPD). Experimental conditions including extraction solvent, solvent volume, extraction time, temperature and ionic strength have been investigated for both HF-LPME and DLLME. Under the optimal conditions, the limits of detection for the six target OSPs (malathion, chlorpyrifos, buprofezin, triazophos, carbosulfan and pyridaben) obtained by HF-LPME-GC-FPD and DLLME-GC-FPD were ranged from 1.16 microg/L to 48.48 microg/L and 0.21 microg/L to 3.05 microg/L, respectively. The relative standard deviations (RSDs, n=5) were in the range of 3.4-8.0% and 8.5-13.7%with the enrichment factors (EFs) of 27-530 and 176-946 folds for HF-LPME-GC-FPD and DLLME-GC-FPD, respectively. Both methods were found to be simple, fast, efficient, and inexpensive. Compared with HF-LPME, the advantages of DLLME technique were less extraction time, suitable for batches of samples pretreatment simultaneously, a higher extraction capacity when analyzing simple samples such as water samples. While for the analysis of complicated matrix samples such as soil and beverage samples, HF-LPME was demonstrated to be more robust and more suitable. Both methods were applied to the analysis of six OSPs in different waters, soil and beverage samples, and no target OSPs was found in these samples. For analysis of the spiked samples, the recovery of 81.7-114.4% with RSDs of 0.6-9.6% were obtained for HF-LPME, and the recovery of 78.5-117.2% with RSDs of 0.6-11.9% were obtained for DLLME.  相似文献   

12.
This paper describes a new extraction method for the determination of aliphatic hydrocarbons (AHs) in soil and sediment samples, using continuous microwave-assisted extraction (MAE) combined with liquid-liquid extraction, for clean-up purposes. Analytical determinations were carried out by gas chromatography coupled with impact ionization mass spectrometry. The influence of the experimental conditions was tested using an agricultural soil spiked with standards (stored at 4 degrees C for 1 month) as reference soil. Maximum extraction efficiencies (80-90%) were achieved using 0.1-1.0g of sample, 60microl of water and 3ml of n-hexane (extractant) and 5min of extraction time; less than 70% of the most volatile hydrocarbons (C(9)-C(12)) were recovered since many evaporated during the drying step of the sample. MAE was compared with a conventional extraction method such as Soxhlet and a good agreement in the results was obtained (average recovery percentage value of 105% by comparing MAE against Soxhlet). Quality parameters such as linear range (0.5-800microg/g), limits of detection (LODs) (0.1-0.2microg/g) and precision (RSD, 4-6%) were determined using spiked soil samples. This method was successfully applied to the analysis of aliphatic hydrocarbons (C(9)-C(27) including pristane and phytane) in contaminated real samples.  相似文献   

13.
Yu C  Liu Q  Lan L  Hu B 《Journal of chromatography. A》2008,1188(2):124-131
Two sample preparation methods, dual solvent-stir bars microextraction (DSSBME) and U-shaped hollow fiber-liquid phase microextraction (U-shaped HF-LPME), are proposed and critically compared for high-performance liquid chromatography (HPLC)-ultraviolet (UV)/mass spectrometry (MS) analysis of Sudan dyes in this paper. In DSSBME, the organic solvent was confined to a pair of hollow fiber membrane fixed on a stir bar, which can stir by itself, while the hollow fiber in U-shaped HF-LPME was fixed by two microsyringes. The significant factors affecting the microextraction of Sudan dyes in both microextraction techniques have been examined and no obvious difference in the effect of extraction solvent, pH and salt concentration on the extraction efficiency of Sudan dyes was observed except extraction time and stirring speed. Both microextraction techniques were similar in terms of analytical performance from aqueous solutions (LODs ranged from 0.09 to 0.95 microgL(-1) by HPLC-UV and 2.5-6.2 microgL(-1) by HPLC-MS; the absolute LODs ranged from 0.9 to 11.25 pg by HPLC-UV and 5-21.2 pg by HPLC-MS), however, DSSBME was more stable (lower stirring speed required), less sample consuming and much shorter time required to reach extraction equilibrium; while U-shaped HF-LPME was easier to operate and no more special device required. The two microextraction techniques combined with HPLC-UV/MS were successfully applied to the analysis of real samples including strawberry sauce, capsicum oil, salted egg, and two kinds of chilli sauce. Although the LODs of HPLC-UV are lower than that of HPLC-MS by a factor of 10 in this work, the absolute LODs for both HPLC-UV and HPLC-MS are comparable. HPLC-UV cannot identify the suspicious peaks at the same retention time as that of Sudan II and III in salted egg, while HPLC-MS can give exact information of Sudan I-IV in real sample analysis and is more reliable. The sensitivity of HPLC-MS is enough for real sample analysis.  相似文献   

14.
Hollow fiber-based liquid phase microextraction (HF-LPME) using conventional solvents is limited by their relative instability and high volatility. The use of supramolecular solvents as a liquid membrane phase could overcome these inconveniences due to their negligible vapour pressure and high viscosity. In the present study, a novel and highly flexible method was developed based on supramolecular solvents constructed of vesicles of decanoic acid, which were used for the first time as a solvent in HF-LPME. This solvent is produced from the coacervation of decanoic acid aqueous vesicles by the action of tetrabutylammonium (Bu(4)N(+)). In this work, halogenated anilines as model compounds were extracted from water samples into a supramolecular solvent impregnated in the pores and also filled inside the porous polypropylene hollow fiber membrane. The extracted anilines were separated and determined by high-performance liquid chromatography. The technique requires minimal sample preparation time and toxic organic solvent consumption, and provides a significant advantage over conventional analytical methods. The important parameters influencing the extraction efficiency were studied and optimized utilizing two different optimization methods: one variable at a time and the Box-Behnken design. Under the optimum conditions, the preconcentration factors were in the range of 74 to 203. Linearity of the method was obtained in the range of 1.0-100 μg L(-1) with the correlation coefficients of determination (R(2)) ranging from 0.9901 to 0.9986. The limits of detection for the target anilines were 0.5-1.0 μg L(-1). The relative standard deviations varied from 3.9% to 6.0%. The relative recoveries of the three halogenated anilines from water samples at a spiking level of 20.0 μg L(-1) were in the range of 90.4-107.4%.  相似文献   

15.
用异丙醇-硫酸铵双水相体系,利用维生素B12的疏水性和硫酸铵的盐析作用,在高浓度无机Co2+共存的情况下可有效地实现维生素B12的选择性分离富集.对双水相体系的组成、萃取时间和pH等实验参数进行了优化,在2.0mL样品、1.1g硫酸铵和200μL异丙醇组成的双水相体系中,对50μgL-1的维生素B12溶液经过萃取分离后富集倍数为11.8.取20μL双水相体系上相进行电热原子吸收检测,线性范围为2~100μgL-1,检出限为0.6μgL-1(3σ,n=11),相对标准偏差为2.8%(50μgL-1,n=9).将所建立的方法应用于功能饮料、保健药片、牛肝等实际样品中维生素B12的含量测定,加标回收率在97%~104%之间.  相似文献   

16.
Li Y  Dong F  Liu X  Xu J  Li J  Kong Z  Chen X  Song W  Wang Y  Zheng Y 《Journal of chromatography. A》2011,1218(38):6667-6674
A novel and sensitive method was developed for the simultaneous determination of fenbuconazole and its main metabolites enantioselectively using chiral liquid chromatography coupled with tandem mass spectrometry. The separation and determination were performed using reversed-phase chromatography on a cellulose chiral stationary phase, a Chiralcel OD-RH (150 mm×4.6 mm) column, under isocratic conditions at 0.5 mL/min flow rate. The effects of three cellulose-based columns and three amylose-based columns on the separation were also investigated. The elution orders of the eluting enantiomers were identified by an optical rotation detector. The QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the extraction and clean-up of the soil and water samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under optimal conditions, the mean recoveries for all enantiomers from the soil samples were 82.5-104.1% with 2.7-9.5% intra-day relative standard deviations (RSD) and 5.7-11.2% inter-day RSD at 5, 25 and 50 μg/kg levels; the mean enantiomer recoveries from the water samples were 81.8-104.6% with 2.6-11.4% intra-day RSD and 5.3-10.4% inter-day RSD at 0.25, 0.5 and 2.5 μg/L levels. Coefficients of determination R2≥0.9991 were achieved for each enantiomer in the soil and water matrix calibration curves within the range of 1.0-125 μg/L. The limits of detection (LOD) for all enantiomers in the soil and water were less than 0.8 μg/kg, whereas the limit of quantification (LOQ) did not exceed 2.5 μg/kg. The results of the method validation confirm that this proposed method is convenient and reliable for the enantioselective determination of the enantiomers of fenbuconazole and its main metabolites in soil and water.  相似文献   

17.
A simple and efficient method known as dispersive liquid-liquid microextraction (DLLME) was demonstrated for the extraction of triadimefon, uniconazole and tebuconazole in real water samples prior to high performance liquid chromatography-ultraviolet detection (HPLC-UV). Several related parameters that could affect the extraction efficiencies were also investigated and optimised. Under the optimum conditions, a linear range was obtained between the peak area and the concentration of the interested analytes over the concentration range of 1.5–100?µg?L?1 for triadimefon, 2.0–100?µg?L?1 for uniconazole and tebuconazole, respectively. The limits of detection (LODs) (S/N?=?3) values were in the range of 0.9–1.2?µg?L?1. The intra-day and inter-day precisions for the analysis ranged from 2.8 to 7.6%. The relative recoveries of the three analytes in tap, well and lake water samples were in the range of 90.6–105.3%. Finally, a comparison of the sensitivity between the proposed DLLME and the improved single-drop microextraction was also evaluated.  相似文献   

18.
Volatile organic compounds (VOCs) are toxic compounds in the air, water and land. In the proposed method, ultrasound-assisted emulsification microextraction (USAEME) combined with gas chromatography-mass spectrometry (GC-MS) has been developed for the extraction and determination of eight VOCs in water samples. The influence of each experimental parameter of this method (the type of extraction solvent, volume of extraction solvent, salt addition, sonication time and extraction temperature) was optimized. The procedure for USAEME was as follows: 15 μL of 1-bromooctane was used as the extraction solvent; 10 mL sample solution in a centrifuge tube with a cover was then placed in an ultrasonic water bath for 3 min. After centrifugation, 2 μL of the settled 1-bromooctane extract was injected into the GC-MS for further analysis. The optimized results indicated that the linear range is 0.1-100.0 μg/L and the limits of detection (LODs) are 0.033-0.092 μg/L for the eight analytes. The relative standard deviations (RSD), enrichment factors (EFs) and relative recoveries (RR) of the method when used on lake water samples were 2.8-9.5, 96-284 and 83-110%. The performance of the proposed method was gauged by analyzing samples of tap water, lake water and river water samples.  相似文献   

19.
HPLC-MS/MS法同时测定果蔬中6种植物生长抑制剂残留   总被引:3,自引:0,他引:3  
利用高效液相色谱-电喷雾串联质谱(HPLC-ESI MS/MS)技术,建立了果蔬中氯化胆碱、矮壮素、缩节胺、嘧啶醇、多效唑、烯效唑6种植物生长抑制剂残留的检测方法.考察了流动相组分和流动相添加剂对质谱离子化效率的影响以及提取溶剂、提取剂用量和固相萃取柱对萃取效率的影响.在优化条件下,6种目标化合物在1.0 ~200.0...  相似文献   

20.
Two methods, based on hollow fiber liquid–liquid–liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L 1 and 0.4 μg L 1 (as Hg) with precisions (RSDs (%), c = 5 μg L− 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME–GFAAS and HF-LPME–GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L 1 was obtained. Finally, HF-LLLME–GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99–113%. In order to validate the method, HF-LLLME–GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish muscle, and the determined values were in good agreement with the certified values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号