首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
María-Elena Vázquez-Cendón  Luis Cea 《PAMM》2007,7(1):1100205-1100206
An unstructured finite volume model for quasi-2D free surface flow with wet-dry fronts and turbulence modelling is presented. The convective flux is discretised with either a an hybrid second-order/first-order scheme, or a fully second order scheme, both of them upwind Godunov's schemes based on Roe's average. The hybrid scheme uses a second order discretisation for the two unit discharge components, whilst keeping a first order discretisation for the water depth [2]. In such a way the numerical diffusion is much reduced, without a significant reduction on the numerical stability of the scheme, obtaining in such a way accurate and stable results. It is important to keep the numerical diffusion to a minimum level without loss of numerical stability, specially when modelling turbulent flows, because the numerical diffusion may interfere with the real turbulent diffusion. In order to avoid spurious oscillations of the free surface when the bathymetry is irregular, an upwind discretisation of the bed slope source term [4] with second order corrections is used [2]. In this way a fully second order scheme which gives an exact balance between convective flux and bed slope in the hydrostatic case is obtained. The k – ε equations are solved with either an hybrid or a second order scheme. In all the numerical simulations the importance of using a second order upwind spatial discretisation has been checked [1]. A first order scheme may give rather good predictions for the water depth, but it introduces too much numerical diffusion and therefore, it excessively smooths the velocity profiles. This is specially important when comparing different turbulence models, since the numerical diffusion introduced by a first order upwind scheme may be of the same order of magnitude as the turbulent diffusion. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This paper presents an efficient numerical technique for solving a class of time-fractional diffusion equation. The time-fractional derivative is described in the Caputo form. The L1 scheme is used for discretization of Caputo fractional derivative and a collocation approach based on sextic B-spline basis function is employed for discretization of space variable. The unconditional stability of the fully-discrete scheme is analyzed. Two numerical examples are considered to demonstrate the accuracy and applicability of our scheme. The proposed scheme is shown to be sixth order accuracy with respect to space variable and (2 − α)-th order accuracy with respect to time variable, where α is the order of temporal fractional derivative. The numerical results obtained are compared with other existing numerical methods to justify the advantage of present method. The CPU time for the proposed scheme is provided.  相似文献   

3.
In this paper, we propose an efficient numerical scheme for magnetohydrodynamics (MHD) equations. This scheme is based on a second order backward difference formula for time derivative terms, extrapolated treatments in linearization for nonlinear terms. Meanwhile, the mixed finite element method is used for spatial discretization. We present that the scheme is unconditionally convergent and energy stable with second order accuracy with respect to time step. The optimal L 2 and H 1 fully discrete error estimates for velocity, magnetic variable and pressure are also demonstrated. A series of numerical tests are carried out to confirm our theoretical results. In addition, the numerical experiments also show the proposed scheme outperforms the other classic second order schemes, such as Crank-Nicolson/Adams-Bashforth scheme, linearized Crank-Nicolson’s scheme and extrapolated Gear’s scheme, in solving high physical parameters MHD problems.  相似文献   

4.
5.
In this paper, we propose a novel numerical scheme for solving Burgers’ equation. The scheme is based on a cubic spline quasi-interpolant and multi-node higher order expansion, which make the algorithm simple and easy to implement. The numerical experiments show that the proposed method produces high accurate results.  相似文献   

6.
A high-order finite difference method for the two-dimensional coupled nonlinear Schrödinger equations is considered. The proposed scheme is proved to preserve the total mass and energy in a discrete sense and the solvability of the scheme is shown by using a fixed point theorem. By converting the scheme in the point-wise form into a matrix–vector form, we use the standard energy method to establish the optimal error estimate of the proposed scheme in the discrete L2-norm. The convergence order is proved to be of a fourth-order in space and a second-order in time, respectively. Finally, some numerical examples are given in order to confirm our theoretical results for the numerical method. The numerical results are compared with exact solutions and other existing method. The comparison between our numerical results and those of Sun and Wangreveals that our method improves the accuracy of space and time directions.  相似文献   

7.
In this work we construct and analyze some finite difference schemes used to solve a class of time‐dependent one‐dimensional convection‐diffusion problems, which present only regular layers in their solution. We use the implicit Euler or the Crank‐Nicolson method to discretize the time variable and a HODIE finite difference scheme, defined on a piecewise uniform Shishkin mesh, to discretize the spatial variable. In both cases we prove that the numerical method is uniformly convergent with respect to the diffusion parameter, having order near two in space and order one or 3/2, depending on the method used, in time. We show some numerical examples which illustrate the theoretical results, in the case of using the Euler implicit method, and give better numerical behaviour than that predicted theoretically, showing order two in time and order N?2log2N in space, if the Crank‐Nicolson scheme is used to discretize the time variable. Finally, we construct a numerical algorithm by combining a third order A‐stable SDIRK with two stages and a third‐order HODIE difference scheme, showing its uniformly convergent behavior, reaching order three, up to a logarithmic factor. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

8.
A three-time level finite-difference scheme based on a fourth order in time and second order in space approximation has been proposed for the numerical solution of the nonlinear two-dimensional sine-Gordon equation. The method, which is analysed for local truncation error and stability, leads to the solution of a nonlinear system. To avoid solving it, a predictor–corrector scheme using as predictor a second-order explicit scheme is proposed. The procedure of the corrector has been modified by considering as known the already evaluated corrected values instead of the predictor ones. This modified scheme has been tested on the line and circular ring soliton and the numerical experiments have proved that there is an improvement in the accuracy over the standard predictor–corrector implementation. This research was co-funded by E.U. (75%) and by the Greek Government (25%).  相似文献   

9.
We present an explicit sixth‐order compact finite difference scheme for fast high‐accuracy numerical solutions of the two‐dimensional convection diffusion equation with variable coefficients. The sixth‐order scheme is based on the well‐known fourth‐order compact (FOC) scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multiscale multigrid method to compute the fourth‐order solutions on both the coarse grid and the fine grid. Then, an operator interpolation scheme combined with the Richardson extrapolation technique is used to compute a sixth‐order accurate fine grid solution. We compare the computed accuracy and the implementation cost of the new scheme with the standard nine‐point FOC scheme and Sun–Zhang's sixth‐order method. Two convection diffusion problems are solved numerically to validate our proposed sixth‐order scheme. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

10.
王涛  刘铁钢 《计算数学》2016,38(4):391-404
目前,许多高精度差分格式,由于未成功地构造与其精度匹配的稳定的边界格式,不得不采用低精度的边界格式.本文针对对流扩散方程证明了存在一致四阶紧致格式,它的边界点的计算格式和内点的计算格式的截断误差主项保持一致,给出了具体内点和边界格式;并分析了此半离散格式的渐近稳定性.数值结果表明该格式是四阶精度;在对流占优情况下,本文边界格式的数值结果比四阶精度的显式差分格式的的数值结果的数值振荡小,取得了不错的效果,理论结果得到了数值验证;驱动方腔数值结果显示,本文对N-S方程的离散格式具有很好的可靠性,适合对复杂流体流动的数值模拟和研究.  相似文献   

11.
This paper is devoted to the analysis of a numerical scheme for the coagulation and fragmentation equation. A time explicit finite volume scheme is developed, based on a conservative formulation of the equation. It is shown to converge under a stability condition on the time step, while a first order rate of convergence is established and an explicit error estimate is given. Finally, several numerical simulations are performed to investigate the gelation phenomenon and the long time behavior of the solution.

  相似文献   


12.
In this article, an efficient fourth‐order accurate numerical method based on Padé approximation in space and singly diagonally implicit Runge‐Kutta method in time is proposed to solve the time‐dependent one‐dimensional reaction‐diffusion equation. In this scheme, we first approximate the spatial derivative using the second‐order central finite difference then improve it to fourth‐order by applying Padé approximation. A three stage fourth‐order singly diagonally implicit Runge‐Kutta method is then used to solve the resulting system of ordinary differential equations. It is also shown that the scheme is unconditionally stable, and is suitable for stiff problems. Several numerical examples are solved by the scheme and the efficiency and accuracy of the new scheme are compared with two widely used high‐order compact finite difference methods. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1423–1441, 2011  相似文献   

13.
对二维标量双曲型守恒律方程,发展了一类满足局部极值原理的非结构网格有限体积格式.其构造思想是,以单调数值通量为基础,通过应用基于最小二乘法的二次重构和极值限制器,使数值解满足局部极值原理.为保证数值解在光滑区域达到三阶精度,该格式可结合局部光滑探测器使用.本文从理论上分析了格式的稳定性条件,数值实验验证了格式的精度和对间断的分辨能力.  相似文献   

14.
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis.  相似文献   

15.
We construct an efficient hybrid numerical method for solving coupled systems of singularly perturbed linear parabolic problems of reaction-diffusion type. The discretization of the coupled system is based on the use of an additive or splitting scheme on a uniform mesh in time and a hybrid scheme on a layer-adapted mesh in space. It is proven that the developed numerical method is uniformly convergent of first order in time and third order in space. The purpose of the additive scheme is to decouple the components of the vector approximate solution at each time step and thus make the computation more efficient. The numerical results confirm the theoretical convergence result and illustrate the efficiency of the proposed strategy.  相似文献   

16.
In this paper, a new difference scheme based on quartic splines is derived for solving linear and nonlinear second-order ordinary differential equations subject to Neumann-type boundary conditions. The scheme can achieve sixth order accuracy at the interior nodal points and fourth order accuracy at and near the boundary, which is superior to the well-known Numerov’s scheme with the accuracy being fourth order. Convergence analysis of the present method for linear cases is discussed. Finally, numerical results for both linear and nonlinear cases are given to illustrate the efficiency of our method.  相似文献   

17.
The paper deals with the numerical solution of a basic 2D model of the propagation of an ionization wave. The system of equations describing this propagation consists of a coupled set of reaction–diffusion-convection equations and a Poissons equation. The transport equations are solved by a finite volume method on an unstructured triangular adaptive grid. The upwind scheme and the diamond scheme are used for the discretization of the convection and diffusion fluxes, respectively. The Poisson equation is also discretized by the diamond scheme. Numerical results are presented. We deal in more detail with numerical tests of the grid adaptation technique and its influence on the numerical results. An original behavior is observed. The grid refinement is not sufficient to obtain accurate results for this particular phenomenon. Using a second order scheme for convection is necessary.  相似文献   

18.
In this paper, we propose a new scheme for the numerical integration of the Landau–Lifschitz–Gilbert (LLG) equations in their full complexity, in particular including stray-field interactions. The scheme is consistent up to order 2 (in time), and unconditionally stable. It combines a linear inner iteration with a non-linear renormalization stage for which a rigorous proof of convergence of the numerical solution toward a weak solution is given, when both space and time stepsizes tend to \(0\) . A numerical implementation of the scheme shows its performance on physically relevant test cases. We point out that to the knowledge of the authors this is the first finite element scheme for the LLG equations which enjoys such theoretical and practical properties.  相似文献   

19.
In this paper, we consider the numerical treatment of a fourth‐order fractional diffusion‐wave problem. Our proposed method includes the use of parametric quintic spline in the spatial dimension and the weighted shifted Grünwald‐Letnikov approximation of fractional integral. The solvability, stability, and convergence of the numerical scheme are rigorously proved. It is shown that the theoretical convergence order improves those of earlier work. Simulation is further carried out to demonstrate the numerical efficiency of the proposed scheme and to compare with other methods.  相似文献   

20.
This paper presents a new difference scheme for numerical solution of stiff systems of ODE’s. The present study is mainly motivated to develop an absolutely stable numerical method with a high order of approximation. In this work a double implicit A-stable difference scheme with the sixth order of approximation is suggested. Another purpose of this study is to introduce automatic choice of the integration step size of the difference scheme which is derived from the proposed scheme and the one step scheme of the fourth order of approximation. The algorithm was tested by means of solving the Kreiss problem and a chemical kinetics problem. The behavior of the gas explosive mixture (H 2 + O2) in a closed space with a mobile piston is considered in test problem 2. It is our conclusion that a hydrogen-operated engine will permit to decrease the emitted levels of hazardous atmospheric pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号