首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
考虑到空位缺陷的存在和原子非简谐振动,以铜、镍基外延石墨烯为例, 研究了金属基外延石墨烯空位缺陷浓度和态密度以及电导率随温度的变化规律,探讨了空位缺陷的影响。结果表明:(1) 空位缺陷浓度随温度升高而非线性增大,外延石墨烯的空位缺陷浓度及其随温度的变化率均大于石墨烯; (2) 与石墨烯相同,金属基外延石墨烯的态密度变化曲线对电子能量为0为对称,但空位缺陷的存在使态密度在电子能量为零时的值不为零,空位缺陷对导带态密度的影响大于价带;态密度随空位缺陷浓度的增大而线性减小,但减小幅度不大,而温度对石墨烯态密度几乎无影响;(3)金属基外延石墨烯的电导率近似等于电子声子相互作用贡献的电导率,并随温度升高而非线性减小;空位缺陷的存在使电导率有所减小,但只在较高温度下才明显。原子非简谐振动情况的电导率稍大于简谐近似的电导率,温度愈高,两者电导率的差愈大,即非简谐效应愈显著。  相似文献   

2.
Based on a semiclassical Boltzmann transport equation in random phase approximation, we develop a theoretical model to understand low-field carrier transport in biased bilayer graphene, which takes into account the charged impurity scattering, acoustic phonon scattering, and surface polar phonon scattering as three main scattering mechanisms. The surface polar optical phonon scattering of carriers in supported bilayer graphene is thoroughly studied using the Rode iteration method. By considering the metal–BLG contact resistance as the only one free fitting parameter, we find that the carrier density dependence of the calculated total conductivity agrees well with that observed in experiment under different temperatures. The conductivity results also suggest that in high carrier density range, the metal–BLG contact resistance can be a significant factor in determining the BLG conductivity at low temperature, and both acoustic phonon scattering and surface polar phonon scattering play important roles at higher temperature, especially for BLG samples with a low doping concentration, which can compete with charged impurity scattering.  相似文献   

3.
We investigate the plasmon dispersion relation and damping rate of a double-layer graphene system consisting of two separated monolayer graphenes with no interlayer tunneling at finite temperature. We use the temperature dependent RPA dielectric function which is valid for graphene systems to obtain the plasmon frequencies and damping rates at different temperatures, interlayer correlation parameters and electron densities and then compare them with those obtained from the zero temperature calculations. Our results show that by increasing the temperature, the plasmon frequencies decrease and the decay rate increases. Furthermore, we find that the behavior of a double-layer graphene system at small and large correlation parameters is different from the conventional double-layer two-dimensional electron gas system. Finally, we obtain that in a density imbalanced double-layer graphene system, the acoustic plasmons are more affected by temperature than the equal electron densities one.  相似文献   

4.
In this work, we investigate the effect of temperature, defect, and strain rate on the mechanical properties of multi-layer graphene using coarse-grained molecular dynamics (CGMD) simulations. The simulation results reveal that the mechanical properties of multi-layer graphene tend to be less sensitive to temperature as the layer increases, but they are sensitive to the distribution and coverage of Stone-Wales (SW) defects. For the same number of defect, there is less decline in the fracture stress and Young's modulus of graphene when the defects have a regular distribution, in contrast to random distribution. In addition, Young's modulus is less influenced by temperature and defect, compared to fracture stress. Both the fracture stress and Young's modulus have little dependence on strain rate.  相似文献   

5.
Xu Cheng 《中国物理 B》2021,30(11):118103-118103
Optical fiber temperature sensors have been widely employed in enormous areas ranging from electric power industry, medical treatment, ocean dynamics to aerospace. Recently, graphene optical fiber temperature sensors attract tremendous attention for their merits of simple structure and direct power detecting ability. However, these sensors based on transfer techniques still have limitations in the relatively low sensitivity or distortion of the transmission characteristics, due to the unsuitable Fermi level of graphene and the destruction of fiber structure, respectively. Here, we propose a tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber (Gr-PCF) with the non-destructive integration of graphene into the holes of PCF. This hybrid structure promises the intact fiber structure and transmission mode, which efficiently enhances the temperature detection ability of graphene. From our simulation, we find that the temperature sensitivity can be electrically tuned over four orders of magnitude and achieve up to ~ 3.34×10-3 dB/(cm·℃) when the graphene Fermi level is ~ 35 meV higher than half the incident photon energy. Additionally, this sensitivity can be further improved by ~ 10 times through optimizing the PCF structure (such as the fiber hole diameter) to enhance the light-matter interaction. Our results provide a new way for the design of the highly sensitive temperature sensors and broaden applications in all-fiber optoelectronic devices.  相似文献   

6.
徐志成  钟伟荣 《物理学报》2014,63(8):83401-083401
采用非平衡分子动力学方法,通过分别控制温度和速度的方式研究了C60轰击石墨烯的瞬间动力学,研究表明,无论温度如何变化,C60在低速轰击石墨烯时都不能击穿石墨烯,但在高速轰击石墨烯时都能击穿石墨烯,并不受温度影响,对于在低速与高速的过渡段,发现C60击穿石墨烯的概率会随着温度的提升而呈现增加的趋势,导致此现象的原因是在高温时C60破坏石墨烯C—C键的概率更高,C60轰击石墨烯的动力学在石墨烯表面清理和纳米孔制备方面有潜在应用。  相似文献   

7.
By using the transfer matrix method, we discover three types of current, such as the 100% spin-valley polarized current, pure spin-valley current and pure charge current, in a two-terminal graphene system. These types of current can be obtained and mutually switched by modulating the parameters of the modified Haldane model (MHM). In our work, these types of current are driven by the thermal bias. Compared with this method of increasing the one-lead temperature (with a fixed temperature difference), the thermal currents can be more effectively strengthened by increasing the temperature difference (with a fixed one-lead temperature). In order to rapidly turn off these currents, we choose to enhance the intensity of the off-resonant circularly polarized light instead of canceling the temperature difference. These results indicate that the graphene system with the MHM has promising applications in the spin and valley caloritronics.  相似文献   

8.
Using classical molecular dynamics and a simulated annealing technique,we show that microscopic corrugations occur in monolayer and bilayer graphene on 6H-SiC substrates.From an analysis of the atomic configurations,two types of microscopic corrugations are identified,namely periodic ripples at room temperature and random ripples at high temperature.Two different kinds of ripple morphologies,each with a periodic structure,occur in the monolayer graphene due to the existence of a coincidence lattice between graphene and the SiC terminated surface(Si-or C-terminated surface).The effect of temperature on microscopic ripple morphology is shown through analysing the roughness of the graphene.A temperature-dependent multiple bonding conjugation is also shown by the broad distribution of the carbon-carbon bond length and the bond angle in the rippled graphene on the SiC surface.These results provide atomic-level information about the rippled graphene layers on the two polar faces of the 6H-SiC substrate,which is useful not only for a better understanding of the stability and structural properties of graphene,but also for the study of the electronic properties of graphene-based devices.  相似文献   

9.
We present the interatomic force constants and phonon dispersions of graphite and graphene from the LCBOPII empirical bond order potential. We find a good agreement with experimental results, particularly in comparison to other bond order potentials. From the flexural mode we determine the bending rigidity of graphene to be 0.69 eV at zero temperature. We discuss the large increase of this constant with temperature and argue that derivation of force constants from experimental values should take this feature into account. We examine also other graphitic systems, including multilayer graphene for which we show that the splitting of the flexural mode can provide a tool for characterization.  相似文献   

10.
The thermoelectric power of a material, typically governed by its band structure and carrier density, can be varied by chemical doping that is often restricted by solubility of the dopant. Materials showing large thermoelectric power are useful for many industrial applications, such as the heat-to-electricity conversion and the thermoelectric cooling device. Here we show a full electric-field tuning of thermoelectric power in a dual-gated bilayer graphene device resulting from the opening of a band gap by applying a perpendicular electric field on bilayer graphene. We uncover a large enhancement in thermoelectric power at a low temperature, which may open up a new possibility in low temperature thermoelectric application using graphene-based device.  相似文献   

11.
We investigate the thermal transport properties of armchair graphene nanoribbons (AGNRs) possessing various sizes of triangular vacancy defect within a temperature range of 200–600 K by using classical molecular dynamics simulation. The results show that the thermal conductivities of the graphene nanoribbons decrease with increasing sizes of triangular vacancy defects in both directions across the whole temperature range tested, and the presence of the defect can decrease the thermal conductivity by more than 40% as the number of removed cluster atoms is increased to 25 (1.56% for vacancy concentration) owing to the effect of phonon–defect scattering. In the meantime, we find the thermal conductivity of defective graphene nanoribbons is insensitive to the temperature change at higher vacancy concentrations. Furthermore, the dependence of temperatures and various sizes of triangular vacancy defect for the thermal rectification ration are also detected. This work implies a possible route to achieve thermal rectifier for 2D materials by defect engineering.  相似文献   

12.
Plasma enhanced chemical vapor deposition (PECVD) is one effective method to prepare graphene at low temperature in a short time. However, the low temperature in PECVD could not provide substrate a proper state for large area and few layer graphene preparation. Herein, we propose a two-step method to grow graphene on Cu foils. In the first step, in order to acquire a smooth and oxide-free surface state, methanol was used as a reductant to pretreat Cu. In the second step, graphene films were prepared on Cu foils by PECVD using CH4 as carbon source with H2-free. Few-layer graphene sheets with diameter about 1 μm under low temperature (700 °C) and at a short time (10 min) on well pretreated Cu foils were successfully gotten. The effect of methanol pretreatment on graphene synthesis and the graphene growth mechanism on Cu substrate by PECVD are analyzed comprehensively.  相似文献   

13.
《Current Applied Physics》2020,20(12):1435-1440
Freestanding graphene on a trench has been fabricated extensively using a transfer process of chemical vapor deposition grown graphene. Here, we demonstrate that freestanding graphene can be grown directly on a trench without a transfer process. A shallow trench was made on a 6H–SiC(0001) wafer using a focused ion beam lithography. The shallow trench was heated to a high temperature under Ar atmosphere. The heat treatment made the shallow trench become deeper and wider. Subsequently, epitaxial graphene was floating on the trench, resulting in freestanding graphene, where underlying bulk SiC was self-etched after the growth of epitaxial graphene. The freestanding graphene on a trench was characterized using Raman spectroscopy and atomic force microscopy. Such freestanding graphene writing can be applied to semiconductor fabrication process of freestanding graphene devices without a transfer process.  相似文献   

14.
常旭 《物理学报》2014,63(8):86102-086102
运用经典分子动力学方法,研究了呈现不同堆积方式的多层石墨烯在不同温度下的表面起伏,并且和单层、双层石墨烯做对比,计算发现:室温下,多层石墨烯中存在着横向特征尺寸约为100 A的起伏,该尺寸会随着温度的升高而增大;同时,起伏的高度也随着温度的升高而增大,这些石墨烯的层内起伏高度关联函数都遵从幂指数标度行为G_h(q)αq~(-α),对于同一种石墨烯,温度越高幂指数越小;而在同一温度下,不同堆积方式的石墨烯的幂指数也不同,所有这些特征都来源于温度以及层间耦合作用引起的非谐效应。  相似文献   

15.
The cross-plane thermal conductivities of multilayer graphene are investigated using nonequilibrium molecular dynamics simulation. It is found that the interfacial thermal resistance in multilayer graphene structures is strongly layer number dependent. It decreases with increasing layer number and reaches a limit as layer number is large enough. The interfacial thermal resistance for graphite and multilayer graphene has an anomalous relationship with temperature compared with that in superlattice structures. It increases with the temperatures above room temperature, which is attributed to phonon tunneling effects. Phonon tunneling probability is reduced due to the decreased phonon wavelength while temperature rises, which in turn causes the increased interfacial thermal resistance.  相似文献   

16.
《Current Applied Physics》2015,15(10):1184-1187
To fabricate a BN-sandwiched multilayer graphene field-effect transistor, we developed a self-aligned contact scheme in combination with optimized stamping processes for the stacking of two-dimensional (2D) materials. By using a self-aligned contact method during device fabrication, we can skip the dry-etch process which requires an exact etch-stop at the surface of the graphene layer and is not easy to control. In the structure of a dual-gate transistor, successful device operation at low temperature with and without magnetic fields proves that the self-alignment contact can be an effective tool for reliable device fabrication using 2D materials.  相似文献   

17.
Graphene dispersions in water are highly desirable for a range of applications such as biomedicines, separation membranes, coatings, inkjet printing and more. Recent novel research has been focussed on developing a green approach for scalable production of graphene. However, one important parameter, which is often neglected is the bulk temperature of the processing liquid. This paper follows our earlier work where optimal sono-exfoliation parameters of graphite in aqueous solutions were determined based on the measured acoustic pressure fields at various temperatures and input powers. Here, we take the next step forward and demonstrate using systematic characterisation techniques and acoustic pressure measurements that sonication-assisted liquid phase exfoliation (LPE) of graphite powder can indeed produce high quality few layer graphene flakes in pure water at a specific temperature, i.e. 40 °C, and at an optimised input generator power of 50%, within 2-h of processing. UV–vis analysis also revealed that the exfoliation, stability and uniformity of dispersions were improved with increasing temperature. We further confirmed the successful exfoliation of graphene sheets with minimal level of defects in the optimized sample with the help of Raman microscopy and transmission electron microscopy. This study demonstrated that understanding and controlling processing temperature is one of the key parameters for graphene exfoliation in water which offers a potential pathway for its large-scale production.  相似文献   

18.
《Current Applied Physics》2018,18(5):551-558
Graphene hybrid materials have been attracting a great deal of attention due to their superior properties. Nevertheless, problems such as expensive and complicated production processes have limited their application to industrial fields. Here, we introduce a one-step synthesis of titanium carbide (TiC) nanoparticles on multilayer graphene nanosheet (TiC/multilayer graphene) composites using thermal plasma. Although there are three types of titanium alkoxides (titanium ethoxide, titanium isopropoxide and titanium n-butoxide), the TiC/multilayer graphene was synthesized from only titanium isopropoxide. The injection temperature of the precursor was varied to investigate the effects of the precursor concentration in the plasma region. A TiC/multilayer graphene hybrid material with crystalline TiC nanoparticles below 50 nm on graphene nanosheets was observed. The number of graphene nanosheet layers varied from one to over 10 according to the injection temperature. When titanium ethoxide and titanium butoxide were injected, TiC with amorphous carbon and graphite were synthesized. The formation of graphene is considered to be affected by the structure of the carbon chain in the precursors and the concentration in the plasma region.  相似文献   

19.
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tensionare investigated using molecular dynamics (MD) simulation method. Theresults show that the Young's moduli and tensile strength of grapheneobviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding asingle graphene sheet. From the simulation, we also find that the Young'smodulus and tensile strength of the Ni-coated graphene/Al composite isobviously larger than those of the uncoated graphene/Al composite. Theincreased magnitude of the Young's modulus and tensile strength ofgraphene/Al composite are 52.27 and 32.32 at 0.01 K, respectively,due to Ni coating. By exploring the effects of temperature on the mechanicalproperties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.  相似文献   

20.
郭辉  路红亮  黄立  王雪艳  林晓  王业亮  杜世萱  高鸿钧 《物理学报》2017,66(21):216803-216803
石墨烯作为一种新型二维材料,因其优异的性质,在科学和应用领域具有非常重要的意义.而其超高的载流子迁移率、室温量子霍尔效应等,使其在信息器件领域备受关注.如何获得高质量并且与当代硅基工艺兼容的石墨烯功能器件,是未来将石墨烯应用于电子学领域的关键.近年来,研究人员发展了一种在外延石墨烯和金属衬底之间实现硅插层的技术,将金属表面外延石墨烯高质量、大面积的特点与当代硅基工艺结合起来,实现了无需转移且无损地将高质量石墨烯置于半导体之上.通过系统的实验研究并结合理论计算,揭示了插层过程包含四个主要阶段:诱导产生缺陷、异质原子插层、石墨烯自我修复和异质原子扩散成膜,并证实了这一插层机制的普适性.拉曼和角分辨光电子能谱实验结果表明,插层后的石墨烯恢复了本征特性,接近自由状态.此外,还实现了多种单质元素的插层.不同种类的原子形成不同的插层结构,从而构成了多种石墨烯/插层异质结.这为调控石墨烯的性质提供了实验基础,也展现了该插层技术的普适性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号