首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a time-reversal invariant s-wave superconductor supporting Majorana edge modes. The multiband character of the model together with spin-orbit coupling are key to realizing such a topological superconductor. We characterize the topological phase diagram by using a partial Chern number sum, and show that the latter is physically related to the parity of the fermion number of the time-reversal invariant modes. By taking the self-consistency constraint on the s-wave pairing gap into account, we also establish the possibility of a direct topological superconductor-to-topological insulator quantum phase transition.  相似文献   

2.
Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermion in these semiconductor-superconductor-nanowire structures is tuning the semiconductor chemical potential in close proximity to the metallic superconductor. We show that presently realizable structures in experiments with tunable chemical potential lead to Majorana resonances, which are interesting in their own right, but do not manifest non-Abelian statistics. To resolve this crucial barrier to the solid state realization of Majorana fermions, we propose a new topological superconducting array structure where introducing the superconducting proximity effect from adjacent nanowires generates Majorana fermions with non-Abelian statistics.  相似文献   

3.
We numerically analyze the effect of finite length of the superconducting regions on the low-energy spectrum, current-phase curves, and critical currents in junctions between trivial and topological superconductors. Such junctions are assumed to arise in nanowires with strong spin-orbit coupling under external magnetic fields and proximity-induced superconductivity. We show that all these quantities exhibit a strong dependence on the length of the topological sector in the topological phase and serve as indicators of the topological phase and thus the emergence of Majorana bound states at the end of the topological superconductor.  相似文献   

4.
Dong-Yang Jing 《中国物理 B》2023,32(1):17401-017401
One-dimensional s-wave superconductor with spin-orbit coupling is a platform for the realization of Majorana zero modes. The spin-exchange with the magnetic skyrmion lattice can induce spin-orbit coupling in a s-wave superconductor system and the effects are different from the constant spin-orbit coupling. The strength of the effective spin-orbit coupling as well as the rich topoloigcal phase diagram are directly connected to the radius of the skyrmion lattice R. We obtain the rich topological phase diagram of this system with different skyrmion lattice radii by numerically evaluating the spectrum of the system under the periodic boundary condition, and we also find the Majorana zero modes under the open boundary condition to verify the bulk-edge correspondence.  相似文献   

5.
In this paper we study the finite-frequency current cross-correlations for a topological superconducting nanowire attached to two terminals at one of its ends. Using an analytic 1D model we show that the presence of a Majorana bound state yields vanishing cross-correlations for frequencies larger than twice the applied transport voltage, in contrast to what is found for a zero-energy ordinary Andreev bound state. Zero cross-correlations at high frequency have been confirmed using a more realistic tight-binding model for finite-width topological superconducting nanowires. Finite-temperature effects have also been investigated.  相似文献   

6.
Lu Yang 《中国物理 B》2021,30(11):117504-117504
We study the possibility to realize a Majorana zero mode that is robust and may be easily manipulated for braiding in quantum computing in the ground state of the Kitaev model in this work. To achieve this we first apply a uniform [111] magnetic field to the gapless Kitaev model and turn the Kitaev model to an effective p+ip topological superconductor of spinons. We then study possible vortex binding in such system to a topologically trivial spot in the ground state. We consider two cases in the system: one is a vacancy and the other is a fully polarized spin. We show that in both cases, the system binds a vortex with the defect and a robust Majorana zero mode in the ground state at a weak uniform [111] magnetic field. The distribution and asymptotic behavior of these Majorana zero modes are studied. The Majorana zero modes in both cases decay exponentially in space, and are robust against local perturbations and other Majorana zero modes far away, which makes them promising candidates for braiding in topological quantum computing.  相似文献   

7.
It was recently realized that quenched disorder may enhance the reliability of topological qubits by reducing the mobility of anyons at zero temperature. Here we compute storage times with and without disorder for quantum chains with unpaired Majorana fermions ?? the simplest toy model of a quantum memory. Disorder takes the form of a random site-dependent chemical potential. The corresponding one-particle problem is a one-dimensional Anderson model with disorder in the hopping amplitudes. We focus on the zero-temperature storage of a qubit encoded in the ground state of the Majorana chain. Storage and retrieval are modeled by a unitary evolution under the memory Hamiltonian with an unknown weak perturbation followed by an error-correction step. Assuming dynamical localization of the one-particle problem, we show that the storage time grows exponentially with the system size. We give supporting evidence for the required localization property by estimating Lyapunov exponents of the one-particle eigenfunctions. We also simulate the storage process for chains with a few hundred sites. Our numerical results indicate that in the absence of disorder, the storage time grows only as a logarithm of the system size. We provide numerical evidence for the beneficial effect of disorder on storage times and show that suitably chosen pseudorandom potentials can outperform random ones.  相似文献   

8.
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chern number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper.  相似文献   

9.
作为马约拉纳费米子的“凝聚态版本”,马约拉纳零能模是当前凝聚态物理领域的研究热点.马约拉纳零能模满足非阿贝尔统计,可以构建受拓扑保护的量子比特.这种由空间上分离的马约拉纳零能模构建的拓扑量子比特不易受局域噪声的干扰,具有长的退相干时间,在容错量子计算中具有重要的应用前景.半导体/超导体纳米线是研究马约拉纳零能模和拓扑量子计算的理想实验平台.本文综述了高质量半导体纳米线外延生长、半导体/超导体异质结制备以及相应的马约拉纳零能模研究方面的进展,并对半导体/超导体纳米线在量子计算中的应用前景进行了展望.  相似文献   

10.
We use the SU(2) slave fermion approach to study a tetrahedral spin 1/2 chain, which is a one-dimensional generalization of the two dimensional Kitaev honeycomb model. Using the mean field theory, coupled with a gauge fixing procedure to implement the single occupancy constraint, we obtain the phase diagram of the model. We then show that it matches the exact results obtained earlier using the Majorana fermion representation. We also compute the spin-spin correlation in the gapless phase and show that it is a spin liquid. Finally, we map the one-dimensional model in terms of the slave fermions to the model of 1D p-wave superconducting model with complex parameters and show that the parameters of our model fall in the topological trivial regime and hence does not have edge Majorana modes.  相似文献   

11.
We study the proximity effect between an s-wave superconductor and the surface states of a strong topological insulator. The resulting two-dimensional state resembles a spinless px+ipy superconductor, but does not break time reversal symmetry. This state supports Majorana bound states at vortices. We show that linear junctions between superconductors mediated by the topological insulator form a nonchiral one-dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating, and fusing Majorana bound states.  相似文献   

12.
13.
We study a two-band model of fermions in a 1d chain with an antisymmetric hybridization that breaks inversion symmetry. We find that for certain values of its parameters, the sp-chain maps formally into a p-wave superconducting chain, the archetypical 1d system exhibiting Majorana fermions. The eigenspectra, including the existence of zero energy modes in the topological phase, agree for both models. The end states too share several similarities, such as the behavior of the localization length, the non-trivial topological index and robustness to disorder. However, we show that the excitations in the ends of a finite sp chain are conventional fermions though endowed with protected topological properties. Our results are obtained by a scattering approach in a semi-infinite chain with an edge defect treated within the T-matrix approximation. We present exact numerical diagonalization results that extend our analysis to arbitrary parameters and to disordered systems.  相似文献   

14.
Fidelity and fidelity susceptibility are introduced to investigate the topological superconductors with end Majorana fermions. A general formalism is established to calculate the fidelity and fidelity susceptibility by solving Bogoliubov–de Gennes equations. Both clean and disordered systems are studied within this formalism, and the results show that the fidelity susceptibility serves as a valid indicator for the topological quantum phase transition which signals the appearance of Majorana fermions. Our study provides a useful tool to investigate the topological quantum phase transition in superconductors, which is helpful to find topological phases in various systems.  相似文献   

15.
《中国物理 B》2021,30(7):77101-077101
We study the topological properties of the one-dimensional non-Hermitian Kitaev model with complex either periodic or quasiperiodic potentials. We obtain the energy spectrum and the phase diagrams of the system by using the transfer matrix method as well as the topological invariant. The phase transition points are given analytically. The Majorana zero modes in the topological nontrivial regimes are obtained. Focusing on the quasiperiodic potential, we obtain the phase transition from the topological superconducting phase to the Anderson localization, which is accompanied with the Anderson localization–delocalization transition in this non-Hermitian system. We also find that the topological regime can be reduced by increasing the non-Hermiticity.  相似文献   

16.
We analyze the reading and initialization of a topological qubit encoded by Majorana fermions in one-dimensional semiconducting nanowires, weakly coupled to a single level quantum dot (QD). It is shown that when the Majorana fermions are fused by tuning gate voltage, the topological qubit can be read out directly through the occupation of the QD in an energy window. The initialization of the qubit can also be realized via adjusting the gate voltage on the QD, with the total fermion parity conserved. As a result, both reading and initialization processes can be achieved in an all-electrical way.  相似文献   

17.
The one-dimensional interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations, and various physical quantities as a function of the fermion-fermion interaction U are calculated systematically using the density matrix renormalization group method. A special value of interaction Up is revealed in the topological region of the phase diagram. We show that at Up the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. Here Up may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.  相似文献   

18.
Superconducting wires without time-reversal and spin-rotation symmetries can be driven into a topological phase that supports Majorana bound states. Direct detection of these zero-energy states is complicated by the proliferation of low-lying excitations in a disordered multimode wire. We show that the phase transition itself is signaled by a quantized thermal conductance and electrical shot noise power, irrespective of the degree of disorder. In a ring geometry, the phase transition is signaled by a period doubling of the magnetoconductance oscillations. These signatures directly follow from the identification of the sign of the determinant of the reflection matrix as a topological quantum number.  相似文献   

19.
We study the topological properties of spin-orbit coupled s-wave superconductor in one-dimensional optical lattice. Compared to its corresponding continuum model, the single particle spectrum is modified by the optical lattice and the topological phase which is characterized by the Majorana edge modes can survive in two regions of the singleparticle spectrum. With the help of the self-consistent Bogoliubov-de Gennes calculation in the harmonic trap, we find that the existence of an upper critical magnetic field removes the topological superconductor phase to the trap wings.We also study the effects of nonmagnetic and magnetic impurity on the topological properties, and find the universal behavior of the mid-gap state induced by impurity in the topological superconductor phase in strong scattering limit.  相似文献   

20.
《Current Applied Physics》2020,20(11):1299-1305
We investigate the crossed Andreev reflection (CAR) through a quantum dot (QD) coupled to topological superconducting single-stranded DNA (ssDNA). It is found that the topological nontrivial states appear in the QD due to leakage of the Majorana zero mode. Majorana zero mode can be identified by measuring the CAR. This device can be used as a Majorana zero mode detector that relies on the system parameters, such as the spin orbit coupling, the twist angle, molecular length. A high efficiency Cooper pair splitter can be realized by regulating the magnitude and direction of the gate voltage. In additions, the signature of CAR is robust against the Coulomb blockade and the disorder induced by distinct amino acids. This work provides an alternative method for detection of Majorana zero mode in ssDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号