首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

2.
Raman spectra of coquandite Sb6O8(SO4)·(H2O) were studied, and related to the structure of the mineral. Raman bands observed at 970, 990 and 1007 cm?1 and a series of overlapping bands are observed at 1072, 1100, 1151 and 1217 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes respectively. Raman bands at 629, 638, 690, 751 and 787 cm?1 are attributed to the SbO stretching vibrations. Raman bands at 600 and 610 cm?1 and at 429 and 459 cm?1 are assigned to the SO42? ν4 and ν2 bending modes. Raman bands at 359 and 375 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the coquandite structure.  相似文献   

3.
Raman spectra of mineral peretaite Ca(SbO)4(OH)2(SO4)2·2H2O were studied, and related to the structure of the mineral. Raman bands observed at 978 and 980 cm?1 and a series of overlapping bands observed at 1060, 1092, 1115, 1142 and 1152 cm?1 are assigned to the SO42? ν1 symmetric and ν3 antisymmetric stretching modes. Raman bands at 589 and 595 cm?1 are attributed to the SbO symmetric stretching vibrations. The low intensity Raman bands at 650 and 710 cm?1 may be attributed to SbO antisymmetric stretching modes. Raman bands at 610 cm?1 and at 417, 434 and 482 cm?1 are assigned to the SO42? ν4 and ν2 bending modes, respectively. Raman bands at 337 and 373 cm?1 are assigned to O–Sb–O bending modes. Multiple Raman bands for both SO42? and SbO stretching vibrations support the concept of the non-equivalence of these units in the peretaite structure.  相似文献   

4.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations.  相似文献   

5.
Raman spectroscopy has been sued to study the antimony containing mineral roméite Ca2Sb2O6(OH,F,O) from three different origins. Roméite is a calcium antimonate mineral of the pyrochlore group. An intense Raman band at ~518 cm?1 for roméite is assigned to the SbO ν1 symmetric stretching mode and the band at 466 cm?1 to the SbO ν3 antisymmetric stretching mode. The Raman band at 303 cm?1 is attributed to the OSbO bending mode. Some variation in band positions is observed and is attributed to the variation in composition between the three mineral samples.  相似文献   

6.
Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide α-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like α-GaO(OH) crystals with average length of 2.5 μm and width of 1.5 μm were prepared when the initial molar ratio of Ga to OH was 1:3. β-Ga2O3 nano and micro-rods were prepared through the calcination of α-GaO(OH). The initial morphology of α-GaO(OH) is retained in the β-Ga2O3 nanorods.The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the α-GaO(OH) nanotubes and the formation of β-Ga2O3 nanorods. Bands at around 2903 and 2836 cm−1 are assigned to the –OH stretching vibration of α-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm−1 are assigned to the Ga–OH deformation modes of α-GaO(OH). A significant number of bands are observed in the 620–725 cm−1 region and are assigned to GaO stretching vibrations.  相似文献   

7.
Neutron inelastic scattering spectra of NaHC2O4, KHC2O4 crystals at 80 K have been recorded in the 2200-200 cm?1 range. The lithium acid salt was also studied at different temperatures. NIS spectra are compared to the corresponding infrared and Raman spectra and an assignment is proposed. Two strong bands near 1500 and 1100 cm?1 are assigned to δ(OH) and γ(OH) vibrations, respectively, while five weak bands below 900 cm?1 are associated with skeletal modes, mainly bending vibrations. The OH stretching vibration is not observed and is believed to be hidden by other bands; the peak intensity must be low because of its band width which is of the order of a few hundreds wavenumbers.  相似文献   

8.
The oxygen ions of the β-VOPO4 catalyst were exchanged with an tracer by a reduction–oxidation method and by a catalytic oxidation of but-1-ene using 2. The bands at 992 and 900 cm−1 were more shifted to lower frequencies than those at 1076 and 1002 cm−1. Applying the correlation between the Raman bands and stretching vibrations in the literature, the exchanged oxygen species were estimated. The results suggest that the P–O–V vacancies corresponding to 992 and 900 cm−1 were responsible for reoxidation and the V=O oxygen corresponding to the 1002 cm−1 band of β-VOPO4 was not. The (VO)2P2O7 was oxidized to β-VOPO4 by O2 above 823 K. The insertion position of oxygen was determined at the bands at 992 and 900 cm−1 of β-VOPO4 using 2, which is the same as the exchanged position.  相似文献   

9.
Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)·2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm−1 and the less intense band at 866 cm−1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm−1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm−1 and 514, 541 and 570 cm−1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm−1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm−1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.  相似文献   

10.
The surface state of optically pure polydisperse TiO2 (anatase and rutile) was determined by infra-red (IR) spectroscopy analysis in the temperature range of 100–453 K. Anatase A300 spectrum, contrary to rutile R300 one, has a broad three-component absorption band with peaks at 1048, 1137 and 1222 cm−1 in the spectral range of δ(Ti–O–H) deformation vibrations. For rutile R300 we observed a very weak band at 1047 cm−1, and for the thermal treated rutile R900 these bands were not appeared at all. The analysis of temperature dependencies for the mentioned absorption bands revealed the spectral shift of 1222 cm−1 band towards the high frequencies, when the temperature increased, but the spectral parameters of 1137 and 1048 cm−1 bands remained the same. The temperature of 1222 cm−1 band maximum shift was 373–393 K and correlated with DSC data. Obtained results allowed to assign 1222 cm−1 band to the deformation vibrations of OH-groups, bounded to the surface adsorbed water molecules by weak hydrogen bonds (5 kcal/mol). During the temperature growth these molecules desorbed, which also resulted in the intensity decreasing of stretching OH-groups vibration IR-bands at 3420 cm−1. The destruction and desorption of surface water complexes led to Ti–O–H bond strengthening. IR bands at 1137 and 1048 cm−1 were attributed to the stronger bounded adsorbed water molecules, which are also characterized with stretching OH-groups vibration bands at 3200 cm−1. These surface structure were additionally stabilized by hydrogen bonds with the neighbouring TiO2 lattice anions and other OH-groups, and desorbed at higher temperatures.  相似文献   

11.
Near-infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to hydrotalcites of the formula Mg6 (Fe,Al)2(OH)16(CO3)·4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio. Such hydrotalcites were found to show variation in the d-spacing attributed to the size of the cation. In the IR (1750–4000 cm−1), the position of all bands except those at approximately 3060 cm−1 shift to higher wavenumbers as the cation ratio increases. Conversely, at wavenumbers below 1000 cm−1, the bands shift to lower wavenumbers as the cation ratio increases. A water bending mode at higher wavenumbers was also observed which indicates that the water is strongly hydrogen bonded. In the NIR spectrum between 8000 and 12,000 cm−1, there is a broad feature which is attributed to electronic bands of the ferrous ion and low intensity sharp bands due to overtones of the OH stretching vibrations. It is also apparent from this region that Fe2+ substitutes for Mg2+. The intensity of bands at 7750 and 5200 cm−1 increases as the cation ratio increases in the NIR spectrum. Hydrotalcites with a magnesium amount 3 and 4 times greater than that of aluminium and iron combined, in the lower wavenumber region of the NIR spectrum, have very similar spectral profiles. This work has shown that hydrotalcites with different divalent/trivalent ratios can be synthesised and characterised by infrared spectroscopy.  相似文献   

12.
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot-stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219 °C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm−1 attributed to ν1 In–O symmetric stretching mode, bands at 1137 and 1155 cm−1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm−1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3, new Raman bands are observed at 125, 295, 488 and 615 cm−1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot-stage Raman spectroscopy.  相似文献   

13.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O.  相似文献   

14.
In this work, from the discussion on water structure and clusters, it can be deduced that the OH stretching vibration is closely related to local hydrogen-bonded network for a water molecule, and different OH vibrations can be assigned to OH groups engaged in various hydrogen bonding. At ambient condition, the main local hydrogen bonding for a molecule can be classified as DDAA (double donor–double acceptor), DDA (double donor–single acceptor), DAA (single donor–double acceptor) and DA (single donor–single acceptor) and free OH vibrations. As for water at 290 K and 0.1 MPa pressure, the OH stretching region of the Raman spectrum can be deconvoluted into five sub-bands, which are located at 3014, 3226, 3432, 3572, and 3636 cm−1, and can be assigned to νDAA-OH, νDDAA-OH, νDA-OH, νDDA-OH, and free OH2 symmetric stretching vibrations, respectively.  相似文献   

15.
This research was done on hureaulite samples from the Cigana claim, a lithium bearing pegmatite with triphylite and spodumene. The mine is located in Conselheiro Pena, east of Minas Gerais. Chemical analysis was carried out by Electron Microprobe analysis and indicated a manganese rich phase with partial substitution of iron. The calculated chemical formula of the studied sample is: (Mn3.23, Fe1.04, Ca0.19, Mg0.13)(PO4)2.7(HPO4)2.6(OH)4.78. The Raman spectrum of hureaulite is dominated by an intense sharp band at 959 cm−1 assigned to PO stretching vibrations of HPO42− units. The Raman band at 989 cm−1 is assigned to the PO43− stretching vibration. Raman bands at 1007, 1024, 1047, and 1083 cm−1 are attributed to both the HOP and PO antisymmetric stretching vibrations of HPO42− and PO43− units. A set of Raman bands at 531, 543, 564 and 582 cm−1 are assigned to the ν4 bending modes of the HPO42− and PO43− units. Raman bands observed at 414, and 455 cm−1 are attributed to the ν2 HPO42− and PO43− units. The intense A series of Raman and infrared bands in the OH stretching region are assigned to water stretching vibrations. Based upon the position of these bands hydrogen bond distances are calculated. Hydrogen bond distances are short indicating very strong hydrogen bonding in the hureaulite structure. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral hureaulite to be understood.  相似文献   

16.
Chrysocolla (Cu, Al)2H2Si2O5(OH)4·nH2O is a hydrated copper hydroxy silicate and is commonly known as a semi-precious jewel. The mineral has an ill defined structure but is said to be orthorhombic, although this remains unproven. Thus, one of the few methods of studying the molecular structure of chrysocolla is to use vibrational spectroscopy. Chrysocolla may be defined as a colloidal mineral. The question arises as to whether chrysocolla is a colloidal system of spertiniite and amorphous silica. The main question addressed by this study is whether chrysocolla is (1) a mesoscopic assemblage of spertiniite, Cu(OH)2, silica, and water, (2) represents a colloidal gel or (3) is composed of microcrystals with a distinct structure.Considerable variation in the vibrational spectra is observed between chrysocolla samples. The Raman spectrum of chrysocolla is characterised by an intense band at 3624 cm−1 assigned to the OH stretching vibrations. Intense Raman bands found at 674, 931 and 1058 cm−1 are assigned to SiO3 vibrations. The Raman spectrum of spertiniite does not correspond to the spectrum of chrysocolla and it is concluded that the two minerals are not related. The spectra of chrysocolla correspond to a copper silicate colloidal gel.  相似文献   

17.
The minerals mimetite Pb5(AsO4)3Cl, arsenian pyromorphite Pb5(PO4,AsO4)3Cl and hedyphane Pb3Ca2(AsO4)3Cl have been studied by Raman spectroscopy complimented with infrared spectroscopy. Mimetite is characterised by a band at 812–3 cm−1 attributed to the Ag mode. For the arsenian pyromorphite this band is observed at 818 cm−1 and for hedyphane at 819 cm−1. For mimetite and hedyphane bands at 788 and 765 cm−1 are attributed to Au and E1u vibrational modes and are both Raman and infrared active. For the arsenian pyromorphite, Raman bands at 917–1014 cm−1 are attributed to phosphate stretching vibrations. Raman spectroscopy clearly identifies bands attributable to isomorphous substitution of arsenate by phosphate. The observation of low intensity bands in the 3200–3550 cm−1 region are assigned to adsorbed water and OH units, thus indicating some replacement of chloride ions with hydroxyl ions.  相似文献   

18.
The far-infrared and Raman spectra of binuclear molecules [Me2AuX]2 (X = Cl, Br, I) and [Me2Au(OOCR)]2 (R = Me, CF3, But, Ph) in the 600–70 cm−1 region are reported. The experimentally measured vibrational frequencies of [Me2AuX]2 are in a good agreement with density functional theory predictions. The Au…Au vibrational interactions predicted to be in the 270–60 cm−1 region of [Me2AuX]2 far-IR and Raman spectra have been observed. The Raman-active Au…Au vibrations of the [Me2Au(OOCR)]2 molecules were found to be in the same region as those of [Me2AuX]2. The Au–X stretching modes were observed between 100 and 250 cm−1 in accordance with the DFT predictions. Their frequencies in the IR spectra of [Me2AuX]2 increase in the sequence I < Br < Cl while the AuC2 stretching frequencies decrease in the same order. This fact might be an evidence of the decreasing covalent character of the gold-halogen bridges. The Au–O stretching bands of dimethylgold(III) carboxylates have been observed in the 500–250 cm−1 region, and Au–C stretching frequencies of both [Me2AuX]2 and [Me2Au(OOCR)]2 compounds have been found between 600 and 500 cm−1.  相似文献   

19.
The paper presents the study of selected montmorillonite standards by Raman spectroscopy and microscopy supported by elemental analysis, X-ray powder diffraction analysis and thermal analysis. Dispersive Raman spectroscopy with excitation lasers of 532 nm and 780 nm, dispersive Raman microscopy with excitation laser of 532 nm and 100× magnifying lens, and Fourier Transform-Raman spectroscopy with excitation laser of 1064 nm were used for the analysis of four montmorillonites (Kunipia-F, SWy-2, STx-1b and SAz-2). These mineral standards differed mainly in the type of interlayer cation and substitution of octahedral aluminium by magnesium or iron. A comparison of measured Raman spectra of montmorillonite with regard to their level of fluorescence and the presence of characteristic spectral bands was carried out. Almost all measured spectra of montmorillonites were significantly affected by fluorescence and only one sample was influenced by fluorescence slightly or not at all. In the spectra of tested montmorillonites, several characteristic Raman bands were found. The most intensive band at 96 cm−1 belongs to deformation vibrations of interlayer cations. The band at 200 cm−1 corresponds to deformation vibrations of the AlO6 octahedron and at 710 cm−1 can be assigned to deformation vibrations of the SiO4 tetrahedron. The band at 3620 cm−1 corresponds to the stretching vibration of structural OH groups in montmorillonites.  相似文献   

20.
A laueite mineral sample from Lavra Da Ilha, Minas Gerais, Brazil has been studied by vibrational spectroscopy and scanning electron microscopy with EDX. Chemical formula calculated on the basis of semi-quantitative chemical analysis can be expressed as (Mn2+0.85,Fe2+0.10Mg0.05)∑1.00(Fe3+1.90,Al0.10)∑2.00(PO4)2(OH)2·8H2O.The laueite structure is based on an infinite chains of vertex-linked oxygen octahedra, with Fe3+ occupying the octahedral centers, the chain oriented parallel to the c-axis and linked by PO4 groups. Consequentially not all phosphate units are identical. Two intense Raman bands observed at 980 and 1045 cm−1 are assigned to the ν1 PO43− symmetric stretching mode. Intense Raman bands are observed at 525 and 551 cm−1 with a shoulder at 542 cm−1 are assigned to the ν4 out of plane bending modes of the PO43−. The observation of multiple bands supports the concept of non-equivalent phosphate units in the structure. Intense Raman bands are observed at 3379 and 3478 cm−1 and are attributed to the OH stretching vibrations of the hydroxyl units. Intense broad infrared bands are observed. Vibrational spectroscopy enables subtle details of the molecular structure of laueite to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号