首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Recently a new basis for the Hopf algebra of quasisymmetric functions QSym, called quasisymmetric Schur functions, has been introduced by Haglund, Luoto, Mason, van Willigenburg. In this paper we extend the definition of quasisymmetric Schur functions to introduce skew quasisymmetric Schur functions. These functions include both classical skew Schur functions and quasisymmetric Schur functions as examples, and give rise to a new poset LC that is analogous to Young's lattice. We also introduce a new basis for the Hopf algebra of noncommutative symmetric functions NSym. This basis of NSym is dual to the basis of quasisymmetric Schur functions and its elements are the pre-image of the Schur functions under the forgetful map χ:NSymSym. We prove that the multiplicative structure constants of the noncommutative Schur functions, equivalently the coefficients of the skew quasisymmetric Schur functions when expanded in the quasisymmetric Schur basis, are nonnegative integers, satisfying a Littlewood–Richardson rule analogue that reduces to the classical Littlewood–Richardson rule under χ.As an application we show that the morphism of algebras from the algebra of Poirier–Reutenauer to Sym factors through NSym. We also extend the definition of Schur functions in noncommuting variables of Rosas–Sagan in the algebra NCSym to define quasisymmetric Schur functions in the algebra NCQSym. We prove these latter functions refine the former and their properties, and project onto quasisymmetric Schur functions under the forgetful map. Lastly, we show that by suitably labeling LC, skew quasisymmetric Schur functions arise in the theory of Pieri operators on posets.  相似文献   

3.
We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labeled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ?Sn and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B.  相似文献   

4.
Via duality of Hopf algebras, there is a direct association between peak quasisymmetric functions and enumeration of chains in Eulerian posets. We study this association explicitly, showing that the notion of cd-index, long studied in the context of convex polytopes and Eulerian posets, arises as the dual basis to a natural basis of peak quasisymmetric functions introduced by Stembridge. Thus Eulerian posets having a nonnegative cd-index (for example, face lattices of convex polytopes) correspond to peak quasisymmetric functions having a nonnegative representation in terms of this basis. We diagonalize the operator that associates the basis of descent sets for all quasisymmetric functions to that of peak sets for the algebra of peak functions, and study the g-polynomial for Eulerian posets as an algebra homomorphism.  相似文献   

5.
We develop a theory of multigraded (i.e., ℕ l -graded) combinatorial Hopf algebras modeled on the theory of graded combinatorial Hopf algebras developed by Aguiar et al. (Compos. Math. 142:1–30, 2006). In particular we introduce the notion of canonical k-odd and k-even subalgebras associated with any multigraded combinatorial Hopf algebra, extending simultaneously the work of Aguiar et al. and Ehrenborg. Among our results are specific categorical results for higher level quasisymmetric functions, several basis change formulas, and a generalization of the descents-to-peaks map.  相似文献   

6.
An in-depth study of the Tchebyshev transforms of the first and second kind of a poset is taken. The Tchebyshev transform of the first kind is shown to preserve desirable combinatorial properties, including EL-shellability and nonnegativity of the cd-index. When restricted to Eulerian posets, it corresponds to the Billera, Ehrenborg, and Readdy omega map of oriented matroids. The Tchebyshev transform of the second kind U is a Hopf algebra endomorphism on the space of quasisymmetric functions which, when restricted to Eulerian posets, coincides with Stembridge’s peak enumerator. The complete spectrum of U is determined, generalizing the work of Billera, Hsiao, and van Willigenburg. The type B quasisymmetric function of a poset is introduced and, like Ehrenborg’s classical quasisymmetric function of a poset, it is a comodule morphism with respect to the quasisymmetric functions QSym. Finally, similarities among the omega map, Ehrenborg’s r-signed Birkhoff transform, and the Tchebyshev transforms motivate a general study of chain maps which occur naturally in the setting of combinatorial Hopf algebras.  相似文献   

7.
We generalize the Hopf algebras of free quasisymmetric functions, quasisymmetric functions, noncommutative symmetric functions, and symmetric functions to certain representations of the category of finite Coxeter systems and its dual category. We investigate their connections with the representation theory of 0-Hecke algebras of finite Coxeter systems. Restricted to type B and D we obtain dual graded modules and comodules over the corresponding Hopf algebras in type A.  相似文献   

8.
Pairing and Quantum Double of Multiplier Hopf Algebras   总被引:2,自引:0,他引:2  
We define and investigate pairings of multiplier Hopf (*-)algebras which are nonunital generalizations of Hopf algebras. Dual pairs of multiplier Hopf algebras arise naturally from any multiplier Hopf algebra A with integral and its dual Â. Pairings of multiplier Hopf algebras play a basic rôle, e.g., in the study of actions and coactions, and, in particular, in the relation between them. This aspect of the theory is treated elsewhere. In this paper we consider the quantum double construction out of a dual pair of multiplier Hopf algebras. We show that two dually paired regular multiplier Hopf (*-)algebras A and B yield a quantum double which is again a regular multiplier Hopf (*-)algebra. If A and B have integrals, then the quantum double also has an integral. If A and B are Hopf algebras, then the quantum double multiplier Hopf algebra is the usual quantum double. The quantum double construction for dually paired multiplier Hopf (*-)algebras yields new nontrivial examples of multiplier Hopf (*-)algebras.  相似文献   

9.
E.L. Green  E.N. Macros 《代数通讯》2013,41(6):2735-2744
We introduce the notions of self-dual (graded) Hopf algebras and of structurally simple (graded) Hopf algebras. We prove that the self-dual Hopf algebras are structurally simple and provide a construction of self-dual Hopf algebras. Finally, we classify the self-dual quotients of the form TB (M)/I, where TB (M) is a path algebra with a graded Hopf algebra structure, and I is a graded admissible Hopf ideal.  相似文献   

10.
A Hopf algebra is a pair (A, Δ) whereAis an associative algebra with identity andΔa homomorphism formAtoAAsatisfying certain conditions. If we drop the assumption thatAhas an identity and if we allowΔto have values in the so-called multiplier algebraM(AA), we get a natural extension of the notion of a Hopf algebra. We call this a multiplier Hopf algebra. The motivating example is the algebra of complex functions with finite support on a group with the comultiplication defined as dual to the product in the group. Also for these multiplier Hopf algebras, there is a natural notion of left and right invariance for linear functionals (called integrals in Hopf algebra theory). We show that, if such invariant functionals exist, they are unique (up to a scalar) and faithful. For a regular multiplier Hopf algebra (A, Δ) (i.e., with invertible antipode) with invariant functionals, we construct, in a canonical way, the dual (Â, Δ). It is again a regular multiplier Hopf algebra with invariant functionals. It is also shown that the dual of (Â, Δ) is canonically isomorphic with the original multiplier Hopf algebra (A, Δ). It is possible to generalize many aspects of abstract harmonic analysis here. One can define the Fourier transform; one can prove Plancherel's formula. Because any finite-dimensional Hopf algebra is a regular multiplier Hopf algebra and has invariant functionals, our duality theorem applies to all finite-dimensional Hopf algebras. Then it coincides with the usual duality for such Hopf algebras. But our category of multiplier Hopf algebras also includes, in a certain way, the discrete (quantum) groups and the compact (quantum) groups. Our duality includes the duality between discrete quantum groups and compact quantum groups. In particular, it includes the duality between compact abelian groups and discrete abelian groups. One of the nice features of our theory is that we have an extension of this duality to the non-abelian case, but within one category. This is shown in the last section of our paper where we introduce the algebras of compact type and the algebras of discrete type. We prove that also these are dual to each other. We treat an example that is sufficiently general to illustrate most of the different features of our theory. It is also possible to construct the quantum double of Drinfel'd within this category. This provides a still wider class of examples. So, we obtain many more than just the compact and discrete quantum within this setting.  相似文献   

11.
Christian Gottlieb 《代数通讯》2013,41(12):4687-4691
Abstract

Integrals in Hopf algebras are an essential tool in studying finite dimensional Hopf algebras and their action on rings. Over fields it has been shown by Sweedler that the existence of integrals in a Hopf algebra is equivalent to the Hopf algebra being finite dimensional. In this paper we examine how much of this is true Hopf algebras over rings. We show that over any commutative ring R that is not a field there exists a Hopf algebra H over R containing a non-zero integral but not being finitely generated as R-module. On the contrary we show that Sweedler's equivalence is still valid for free Hopf algebras or projective Hopf algebras over integral domains. Analogously for a left H-module algebra A we study the influence of non-zero left A#H-linear maps from A to A#H on H being finitely generated as R-module. Examples and application to separability are given.  相似文献   

12.
The group of Hopf algebra automorphisms for a finite-dimensional semisimple cosemisimple Hopf algebra over a field k was considered by Radford and Waterhouse. In this paper, the groups of Hopf algebra automorphisms for two classes of pointed Hopf algebras are determined. Note that the Hopf algebras we consider are not semisimple Hopf algebras.   相似文献   

13.
Wei Wang  Nan Zhou 《代数通讯》2018,46(8):3241-3261
In this paper, we will develop the smash product of weak multiplier Hopf algebras unifying the cases of Hopf algebras, weak Hopf algebras and multiplier Hopf algebras. We will show that the smash product R#A has a regular weak multiplier Hopf algebra structure if R and A are regular weak multiplier Hopf algebras. We shall investigate integrals on R#A. We also consider the result in the ?-situation and new examples. Dually, we consider the smash coproduct of weak multiplier Hopf algebras under an appropriate form and integrals on the smash coproduct and we obtain results in the ?-situation.  相似文献   

14.
We define Hopf monads on an arbitrary monoidal category, extending the definition given in Bruguières and Virelizier (2007) [5] for monoidal categories with duals. A Hopf monad is a bimonad (or opmonoidal monad) whose fusion operators are invertible. This definition can be formulated in terms of Hopf adjunctions, which are comonoidal adjunctions with an invertibility condition. On a monoidal category with internal Homs, a Hopf monad is a bimonad admitting a left and a right antipode.Hopf monads generalize Hopf algebras to the non-braided setting. They also generalize Hopf algebroids (which are linear Hopf monads on a category of bimodules admitting a right adjoint). We show that any finite tensor category is the category of finite-dimensional modules over a Hopf algebroid.Any Hopf algebra in the center of a monoidal category C gives rise to a Hopf monad on C. The Hopf monads so obtained are exactly the augmented Hopf monads. More generally if a Hopf monad T is a retract of a Hopf monad P, then P is a cross product of T by a Hopf algebra of the center of the category of T-modules (generalizing the Radford–Majid bosonization of Hopf algebras).We show that the comonoidal comonad of a Hopf adjunction is canonically represented by a cocommutative central coalgebra. As a corollary, we obtain an extension of Sweedler?s Hopf module decomposition theorem to Hopf monads (in fact to the weaker notion of pre-Hopf monad).  相似文献   

15.
We define and study the property finite presentability in the category  of Hopf algebras that are smash product of universal enveloping algebra of a Lie algebra by a group algebra. We show that for such Hopf algebras finite presentability is equivalent with finite presentability as an associative k-algebra.  相似文献   

16.
M. Koppinen 《代数通讯》2013,41(11):3669-3690
Double Frobenius algebras (or dF-algebras) were recently introduced by the author. The concept generalizes finite-dimensional Hopf algebras, adjacency algebras of (non-commutative) association schemes, and C-algebras (or character algebras). In this paper we define a dualization construction of a dF-algebra, the so-called linear dual. We show that in the case of a Hopf algebra the linear dual gives the usual dual Hopf algebra and in the case of a C-algebra it essentially gives the usual Kawada’s dual.  相似文献   

17.
This paper is concerned with two generalizations of the Hopf algebra of symmetric functions that have more or less recently appeared. The Hopf algebra of noncommutative symmetric functions and its dual, the Hopf algebra of quasisymmetric functions. The focus is on the incredibly rich structure of the Hopf algebra of symmetric functions and the question of which structures and properties have good analogues for the noncommutative symmetric functions and/or the quasisymmetric functions. This paper attempts to survey the ongoing investigations in this topic as dictated by the knowledge and interests of its author. There are many open questions that are discussed.  相似文献   

18.
We classify finite-dimensional Hopf algebras whose coradical is isomorphic to the algebra of functions on 𝕊3. We describe a new infinite family of Hopf algebras of dimension 72.  相似文献   

19.
For any field k of zero characteristic we give a functor from the category of k-vector spaces into the category of k-Hopf algebras, attaching to any vector space V its bitensorial pointed Hopf algebra Av. This Hopf algebra is graded, fulfills a universal property, and contains a remarkable subspace P of primitive elements, which as a conjecture may generate the Lie algebra Prim Av. In case V is finite-dimensional we exhibit a Hopf pairing between Avand Av-whose kernel contains the (Hopf) ideal generated by the elements of P of degree ? 2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号