首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 802 毫秒
1.
The second-generation Janus scorpionate ligand [HB(mtda (Me)) 3] (-) (mtda (Me) = 2-mercapto-5-methyl-1,3,4-thiadiazolyl) with conjoined ( N, N, N-) and ( S, S, S-) donor faces has been prepared. This second-generation Janus scorpionate ligand [HB(mtda (Me)) 3] (-) differs from the first-generation [HB(mtda) 3] (-) ligand by the replacement of hydrogens on the heterocyclic rings proximal to the nitrogenous face with methyl groups. This study probed whether steric interactions introduced by such methyl group substitution could modulate the reactivity and coordination preferences of these ambidentate ligands. The crystal structures of a sodium complex Na[HB(mtda (Me)) 3].3(MeOH), the potassium complexes K[HB(mtda) 3].MeOH, and K 2[HB(mtda (Me)) 3] 2.3MeOH, and several iron complexes were obtained. The difference between first- and second-generation Janus scorpionate ligands is most obvious from the discrepancy between the properties and structures of the two iron(II) compounds with the formula Fe[HB(mtda (R)) 3] 2.4DMF (R = H or Me). The complex with the first-generation ligand (R = H) is pink and diamagnetic. An X-ray structural study revealed two facially coordinated kappa (3)N-scorpionates with no bound solvent molecules. The average Fe-N bond distance of 1.97 A is indicative of the low-spin t 2g (6)e g* (0) electron configuration. In contrast, the iron(II) complex of the second-generation ligand (R = Me) is yellow and paramagnetic. This structure shows two trans-kappa (1)S-scorpionates and four equatorial-bound DMF where the average Fe-O and Fe-S distances of 2.12 and 2.51 A, respectively, are indicative of the high-spin t 2g (4)e g* (2) electron configuration. The discrepancy in binding modes and spin-states of iron(II) is carried over to the solvent-free Fe[HB(mtda (R)) 3] 2 (R = H, Me) complexes, as determined from Mossbauer spectral studies. The Mossbauer spectral parameters for Fe[HB(mtda) 3] 2 are fully consistent with low-spin iron(II) in a FeN 6 environment, whereas those for Fe[HB(mtda (Me)) 3] 2 are most consistent with high-spin iron(II) in a FeS 6 environment. Interestingly, when either complex is dissolved in highly polar solvents (DMF, DMSO, or H 2O), the ligand completely dissociates forming [Fe(solvent) 6][HB(mtda (R)) 3] 2 (R = H, Me).  相似文献   

2.
The first dinuclear iron(II) complexes of any 4-substituted 3,5-di(2-pyridyl)-4H-1,2,4-triazole ligands, [Fe(II)2(adpt)2(H2O)1.5(CH3CN)2.5](BF4)4 and [Fe(II)2(pldpt)2(H2O)2(CH3CN)2](BF4)4, are presented [where adpt is 4-amino-3,5-di(2-pyridyl)-4H-1,2,4-triazole and pldpt is 4-pyrrolyl-3,5-di(2-pyridyl)-4H-1,2,4-triazole]. Both dinuclear complexes feature doubly triazole bridged iron(II) centers that are found to be [high spin-high spin] at all temperatures, 4-300 K, and to exhibit weak antiferromagnetic coupling. In the analogous monometallic complexes, [Fe(II)(Rdpt)2(X)2](n+), the spin state of the iron(II) center was controlled by appropriate selection of the axial ligands X. Specifically, both of the chloride complexes, [Fe(II)(adpt)2(Cl)2] x 2 MeOH and [Fe(II)(pldpt)2(Cl)2] x 2 MeOH x H2O, were found to be high spin whereas the pyridine adduct [Fe(II)(adpt)2(py)2](BF4)2 was low spin. Attempts to prepare [Fe(II)(pldpt)2(py)2](BF4)2 and the dinuclear analogues [Fe(II)2(Rdpt)2(py)4](BF4)4 failed, illustrating the significant challenges faced in attempts to develop control over the nature of the product obtained from reactions of iron(II) and these bis-bidentate ligands.  相似文献   

3.
A structurally diverse array of polynuclear complexes has been identified and structurally characterized from the reaction of 6-methylpyridine-2-methanol (1) with a range of cobalt(II) salts under a variety of reaction conditions. A tetranuclear cubane, [Co4(1-H)4Cl4(H2O)3(CH3OH)], was isolated from the reaction of 1 with CoCl2.6H2O and NaOH in MeOH, and a tetranuclear double cubane, [Co4(1-H)6(NO3)2], was isolated from the reaction of 1 with Co(NO3)2.6H2O and NEt3 in MeOH. A bowl-shaped trinuclear complex, [Co3(1-H)3Cl3(dmso)], which features a triply bridging dmso ligand, assembled upon mixing 1 and CoCl2.6H2O in dmso. A 1-D coordination polymer, [Co(1)2(SO4)](infinity), where the sulfate ligands bridge "[Co(1)2]" units in a mu2:eta1 fashion to build up the polymer structure, was isolated from the reaction of 1 with CoSO4.7H2O. The reaction of the structurally related ligand 8-hydroxyquinaldine (2) with a mixture of CoCl2.6H2O and Co(OAc)2.4H2O lead to the formation of the tetranuclear double cubane, [Co4(2-H)6Cl2]. Temperature-dependent magnetic measurements have also been performed for these five complexes along with the hydrogen-bonded helicate [Co2(1)2(1-H)2]. The hydrogen bonds of the helicate mediate antiferromagnetic interactions between the cobalt(II) centers (J = -3.18(9) cm(-1), g = 2.25(2)). The sulfate bridging ligands of [Co(1)2(SO4)](infinity) are poor mediators of magnetic exchange. The Co(II) centers in the double-cubane complexes [Co4(1-H)6(NO3)2] and [Co4(2-H)6Cl2] are strongly antiferromagnetically coupled to each other at low temperature to give an S = 0 ground state. [Co4(1-H)4Cl4(H2O)3(MeOH)] exhibits rather complicated magnetic behavior; however, we did not observe any evidence for single-molecule magnetism as was seen for structurally related complexes.  相似文献   

4.
The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4) metallic core, indicates large spin ground states, with likely values of S = 16 (±1) for each. Solid state AC susceptibility measurements confirm the large spin ground state values and is also suggestive of SMM behaviour for 2-5 as observed via the onset of frequency dependent out-of-phase peaks.  相似文献   

5.
The synthesis of the previously unknown tripodal ligand H4-1 is reported. The tetradentate ligand is equipped with a completely unsymmetrical N2OS donor set. It reacts with Ni(OAc)2. 4H2O or Ni(ClO4)2.6H2O to give the multinuclear nickel(II) complexes [Ni(H-1-Imin)(OAc)]2 (2) (which contains a coordinated Schiff base obtained by reation of the primary amine with the acetone solvent) and [Ni3(H3-1)(H2-1)2]-ClO4.H2O.3 MeCN (3), respectively. A solution of 3 in DMF is readily oxidized upon exposure to air or by aqueous H2O2 to yield [Ni(H2-1-sulfinate)]2. 2MeOH (4). The molecular structures of 2-4 have been determined by X-ray diffraction. Complex 2 exhibits a strongly distorted, octahedral coordination geometry around each nickel(II)ion. The primary amino group of the ligand in this case reacted with the solvent acetone to yield a Schiff base which is coordinated to the metal center. The molecular structure of the trinuclear complex cation in 3 consists of two subunits: a nickel atom with a square-planar N2S2 coordination geometry and two other nickel atoms with a trigonal-bipyramidal N2O2S coordination environment. The dinuclear complex 4 shows distorted octahedral geometry around each nickel(II) ion. The thiolato groups of the ligands are oxidized to sulfinato groups which are O,O-bound to the nickel center. This coordination mode is unusual for nickel sulfinate complexes.  相似文献   

6.
Wang X  Vittal JJ 《Inorganic chemistry》2003,42(17):5135-5142
The influences of the nature of reactants and water on the self-assembly of cationic Cu(II) complex structures containing N-(2-pyridylmethyl)glycine (Hpgly) and N-(2-pyridylmethyl)-l-alanine (Hpala) ligands have been investigated. A metallamacrocycle [Cu(6)(pgly)(3)(spgly)(3)] (ClO(4))(6).9H(2)O has been formed by the reaction of [Cu(pgly)(2)].2H(2)O with Cu(ClO(4))(2).6H(2)O. The hexameric cation has Schiff base and reduced Schiff base ligands alternatively bonded to Cu(II) to provide cyclohexane-like conformation with a cavity diameter of 9.4 A. The reaction of Cu(ClO(4))(2).6H(2)O with Hpgly.HCl yielded [Cu(pgly)(H(2)O)](ClO(4)), which is presumed to have 1D coordination polymeric structure. A [K subset [12-MC-3]] metallacrown, [K(ClO(4))(3)[Cu(3)(pala)(3)]](ClO(4)) has been isolated by reacting Cu(ClO(4))(2) with Kpala in MeCN/MeOH. This [K subset [12-MC-3]] metallacrown further reacts with water to form an infinite 1D coordination polymer [Cu(pala)(H(2)O)(ClO(4))](n)(), which can also be obtained by conducting the reaction in aqueous MeOH.  相似文献   

7.
Hou H  Li G  Li L  Zhu Y  Meng X  Fan Y 《Inorganic chemistry》2003,42(2):428-435
Three novel ferrocenecarboxylato-bridged lanthanide dimers [Gd2(mu 2-OOCFc)2(OOCFc)4(MeOH)2(H2O)2].2MeOH.2H2O (1) (Fc = (eta 5-C5H5)Fe(eta 5-C5H4)), [Nd2(mu 2-OOCFc)2(OOCFc)4(H2O)4].2MeOH.H2O (2), and [Y2(mu 2-OOCFc)2-(OOCFc)4(H2O)4].2MeOH (3) have been synthesized and characterized by single-crystal X-ray crystallography. In each complex, two Ln(III) (Ln = Gd, Nd, or Y) ions are bridged by two ferrocenecarboxylate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln2(mu 2-OOCFc)2]; each Ln(III) ion has an irregular polyhedral coordination environment with nine coordinated oxygen atoms derived from the ferrocenecarboxylate ligands and coordinated solvent molecules. In the solid-state structure of compound 1, [Gd2(mu 2-OOCFc)2(OOCFc)4(MeOH)2(H2O)2] groups are joined together by hydrogen bonds forming a two-dimensional network. Both compounds 2 and 3 show one-dimensional chain structures by hydrogen bonding; they are different from 1. Magnetic measurements show unexpected ferromagnetic coupling between the gadolinium(III) ions; the best fittings to the experimental magnetic susceptibilities gave J = 0.006 cm-1 and g = 2.0 for 1. The magnetic behavior for 2 was also studied in the temperature range of 1.8-300 K.  相似文献   

8.
Sreerama SG  Pal S 《Inorganic chemistry》2005,44(18):6299-6307
A series of dinuclear complexes of Mn(III), Fe(III), and Co(III) with two diazine Schiff bases, H2salhn and H2mesalhn, is reported. The Schiff bases are prepared by condensation reactions of hydrazine with salicylaldehyde (H2salhn) and with 2-hydroxyacetophenone (H2mesalhn) in 1:2 mol ratio. X-ray crystallographic characterization reveals triple helical structures of [Co2(salhn)3], [Co2(mesalhn)3], and [Fe2(mesalhn)3]. In each complex, three dinucleating O,N,N,O donor ligands provide three diazine (=N-N=) bridges between the metal ions and facial O3N3 coordination spheres around them. The ligands are twisted about the N-N single bond and coordinate to the two metal ions in a helical fashion to generate the triple helical structure. The dicobalt(III) complex of mesalhn2- is D3-symmetric, while the diiron(III) analogue is very close to being of this symmetry. On the other hand, the dicobalt(III) complex of salhn2- significantly deviates from the ideal D3-symmetry due to the large range covered by the twist angles of the three ligands. In the crystal lattice of these complexes, intermolecular C-H...O, C-H...N, O-H...O, C-H...Cl, and pi-pi interactions involving the complex and the solvent molecules lead to one- and two-dimensional supramolecular structures. The complexes [Fe2(mesalhn)3] and [Co2(mesalhn)3] are redox active and display two successive metal-centered reductions on the cathodic side of Ag/AgCl reference electrode. Weak antiferromagnetic spin-coupling is operative between the two metal ions in [Mn2(salhn)3] (J = -0.57(1) cm(-1)) and in [Fe2(mesalhn)3] (J = -2.82(4) cm(-1)).  相似文献   

9.
The reaction of Zn(II) and Co(II) with thiosalicylic acid, o-HSC6H4COOH, and its methyl ester has led to the following complexes: [Zn(SC6H4COO)] (1), (NEt4)Na[Zn(SC6H4COO)2].H2O (2), (NEt4)2Na[Co(SC6H4COO)3].2H2O (3), (NEt4)3Na3[(Co(SC6H4COO)3)2].6MeOH (4), [Zn(SC6H4COOMe)2] (5), and [Co(SC6H4COOMe)n], n = 2 (6), 3 (7). These ligands have not allowed stabilization of Co(II) in a sulfur-oxygen coordination environment. The structures of complexes 2-4 and 7 have been determined crystallographically. Those of 2-4 show significant similarities such as the behavior of the -SC6H4COO- anion as chelating ligand and the involvement of sodium ions as a structural element. Thus, the structure of the [Na(Zn(SC6H4COO)2)(H2O)]- anion in complex 2 can be described as infinite chains of consecutive [Zn(SC6H4COO)2]2- metalloligands linked by [Na(H2O)]+ centers, that of the [Na(Co(SC6H4COO)3(H2O)2)]2(4-) anion in 3 as a centrosymmetric tetranuclear Co2Na2 dimer with a (CoIII(S[symbol: see text]O)3)Na(mu-H2O)2Na(CoIII(S[symbol: see text]O)3) core, and that of the pentanuclear [Na3(Co(SC6H4COO)3)2(MeOH)6]3- anion in 4 as two dinuclear [(CoIII(S[symbol: see text]O)3)Na(MeOH)3] fragments linked to a central sodium ion, which appears to be the first structurally characterized example of a NaS6 site. The use of the o-HSC6H4COOMe ligand allowed the synthesis of [Co(SC6H4COOMe)2] (6) but not its full structural characterization. Instead, [Co(SC6H4COOMe)3] (7) was obtained and structurally characterized. It consists of mononuclear molecules containing an octahedral CoIIIS3O3 core. The selection of 2,2-diphenyl-2-mercaptoacetic acid as ligand with reductive properties has afforded the first mononuclear complex containing a CoIIS2O2 core and thus an unprecedented model for Co(II)-substituted metalloproteins containing tetrahedral MS2O2 active sites. The synthesis and full structural characterization of the isostructural complexes (NEt4)2[Zn(Ph2C(S)COO)2] (8) and (NEt4)2[Co(Ph2C(S)COO)2] (9) show that they consist of discrete [M(Ph2C(S)COO)2]2- anions, with a distorted tetrahedral coordination about the metal. In addition, the stability conferred by the ligand on the CoIIS2O2 core has allowed its characterization in solution by paramagnetic 1D and 2D 1H NMR studies. The longitudinal relaxation times of the hyperfine-shifted resonances and NOESY spectra have led to the assignment of all resonances of the cobalt complex and confirmed that it maintains its tetrahedral geometry in solution. Magnetic measurements (2-300 K) for complex 9 and 9.2H2O are in good agreement with distorted tetrahedral and octahedral environments, respectively.  相似文献   

10.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

11.
Depending on the synthetic conditions, five heterometallic Mn(III)Fe(II) polynuclear compounds with the same ratio of constituents, 2[Mn(acacen)](+)/[Fe(CN)(5)NO](2-), of different nuclearity and dimensionality (0D, 1D, 2D) were isolated. A [Mn(acacen)MeOH](2)[Fe(CN)(5)NO]·1.5MeOH, 1 complex has been prepared by reaction of Mn(III)/Schiff base (SB) complex, [Mn(acacen)Cl] (H(2)acacen is N,N'-ethylenebis(acetylacetoneimine)) with sodium nitroprusside (NP). Single crystal X-ray diffraction analyses reveal that crystallization of 1 from coordinating or non-coordinating solvents results in different coordination polynuclear materials: from C(2)H(5)OH [{Mn(acacen)H(2)O}(2)Fe(CN)(5)NO]·C(2)H(5)OH, 2, a trinuclear complex is formed; from CH(3)CN [{Mn(acacen)H(2)O}(4)Fe(CN)(5)NO][Fe(CN)(5)NO]·4CH(3)CN, an ionic compound with a pentanuclear bimetallic cation is formed 3; from i-C(3)H(7)OH [{Mn(acacen)}(2)(i-PrOH)Fe(CN)(5)NO](n), a coordination chain polymer 4 is formed; from toluene [{Mn(acacen)}(2)Fe(CN)(5)NO](n), a layered network 5 is formed. As the magnetic measurements show, for all compounds the weak interaction between Mn(III)S = 2 spins through the NP bridge is antiferromagnetic and exhibits no significant photoactivity.  相似文献   

12.
Abe K  Matsufuji K  Ohba M  Okawa H 《Inorganic chemistry》2002,41(17):4461-4467
A phenol-based "end-off" compartmental ligand, 2-[N-[2-(dimethylamino)ethyl]iminomethyl]-6-[N,N-di(2-pyridylmethyl)aminomethyl]-4-methylphenol (HL), having a bidentate arm and a tridentate arm attached to the 2 and 6 positions of the phenolic ring, has afforded the following heterodinuclear M(a)(II)M(b)(II) complexes: [CuM(L)(AcO)(2)]ClO(4) (M = Mn (1), Fe (2), Co (3), Ni (4), Zn (5)), [ZnM(L)(AcO)(2)]ClO(4) (M = Co (6), Ni (7)), and [CuNi(L)(AcO)(NCS)(2)] (8). 1.MeOH (1'), 2.MeOH (2'), 3.MeOH (3'), 4.MeOH (4'), 5.MeOH (5'), and 7.MeOH (7') are isostructural and have a heterodinuclear core bridged by the phenolic oxygen atom of L(-) and two acetate groups. In 1'-5' the Cu(II) is bound to the bidentate arm and has a square-pyramidal geometry with one acetate oxygen at the apical site. The M(II) is bound to the tridentate arm and has a six-coordinate geometry together with two acetate oxygen atoms. In the case of 7' the Zn is bound to the bidentate arm and the Ni is bound to the tridentate arm. 8.2-PrOH (8') has a dinuclear core bridged by the phenolic oxygen atom of L(-) and one acetate group. The Cu bound to the bidentate arm has a square-pyramidal geometry with an isothiocyanate group at the apical site. The Ni bound to the tridentate arm has a six-coordinate geometry with further coordination of an isothiocyanate group. The site specificity of the metal ions is discussed together with the crystal structure of [Cu(4)(L)(2)(AcO)(3)](ClO(4))(3).H(2)O (9) prepared in this work.  相似文献   

13.
Berben LA  Long JR 《Inorganic chemistry》2005,44(23):8459-8468
A straightforward method for synthesizing soluble homoleptic trimethylsilylacetylide complexes of first-row transition metal ions is presented. Reaction of anhydrous CrCl2 with an excess of LiCCSiMe3 in THF at -25 degrees C affords orange Li3[Cr(CCSiMe3)6].6THF (1), while analogous reactions employing M(CF3SO3)2 (M = Fe or Co) generate pale yellow Li4[Fe(CCSiMe3)6].4LiCCSiMe3.4Et2O (2) and colorless Li3[Co(CCSiMe3)6].6THF (3). Slightly modified reaction conditions lead to Li8[Cr2O4(CCSiMe3)6].6LiCCSiMe3.4glyme (4), featuring a bis-mu-oxo-bridged binuclear complex, and Li3[Co(CCSiMe3)5(CCH)].LiCF3SO3.8THF (5). The crystal structures of 1-3 show the trimethylsilylacetylide complexes to display an octahedral coordination geometry, with M-C distances of 2.077(3), 1.917(7)-1.935(7), and 1.908(3) angstroms for M = Cr(III), Fe(II), and Co(III), respectively, and nearly linear M-C[triple bond]C angles. The UV-visible absorption spectrum of [Cr(CCSiMe3)6]3- in hexanes exhibits one spin-allowed d-d transition (4T2g <-- 4A1g) and three lower-energy spin-forbidden d-d transitions. The spectra of [Fe(CCSiMe3)6]4- and [Co(CCSiMe3)6]3- in acetonitrile display high-intensity charge-transfer bands, which obscure all d-d transitions except for the lowest-energy spin-allowed band (1T1g <-- 1A1g) of the latter complex. Time-dependent density functional theory (TD-DFT) calculations were employed as an aide in assigning the observed transitions. Taken together, the results are most consistent with the ligand field parameters delta(o) = 20,200 cm(-1) and B = 530 cm(-1) for [Cr(CCSiMe3)6]3-, delta(o) = 32 450 cm(-1) and B = 460 cm(-1) for [Fe(CCSiMe3)6]4- and delta(o) = 32 500 cm(-1) and B = 516 cm(-1) for [Co(CCSiMe3)6]3-. Ground-state DFT calculations support the conclusion that trimethylsilylacetylide acts as a pi-donor ligand.  相似文献   

14.
Li G  Hou H  Li L  Meng X  Fan Y  Zhu Y 《Inorganic chemistry》2003,42(16):4995-5004
Treatment of two kinds of ferrocenyl-substituted carboxylate ligands (3-ferrocenyl-2-crotonic acid, HOOC-CH=(CH(3))CFc (Fc=(eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))) or O-ferrocecarbonyl benzoic acid, o-HOOCC(6)H(4)COFc with Pb(OAc)(2).3H(2)O, Zn(OAc)(2).2H(2)O, or Cd(OAc)(2).2H(2)O) resulted in four novel ferrocene-containing coordination polymers [[Pb(mu(2)-eta(2)-OOCCH=(CH(3))CFc)(2)].MeOH](n) (1), [[Zn(o-OOCC(6)H(4)COFc)(2)(4,4'-bipy)(H(2)O)(2)].2MeOH.2H(2)O](n) (4,4'-bipy = 4,4'-bipyridine) (2), [[Cd(o-OOCC(6)H(4)COFc)(2)(bpe)(MeOH)(2)].2H(2)O](n) (bpe = 1,2-bis(4-pyridyl)ethene) (3), and [Pb(o-OOCC(6)H(4)COFc)(eta(2)-o-OOCC(6)H(4)COFc)(bpe)](n)() (4). Their crystal structures have been characterized by single X-ray determinations. In polymer 1, Pb(II) ions are bridged by tridentate FcC(CH(3))=CHCOO(-) anions, forming an infinite chain [Pb(mu(2)-eta(2)-OOC=CH(CH(3))CFc)(2)](n). In polymers 2-4, there are three kinds of components, metal ions, o-FcCOC(6)H(4)COO(-) units, and organic bridging ligands. The bipyridine-based ligands connect metal ions leading to a one-dimensional chain with o-FcCOC(6)H(4)COO(-) units acting as monodentate or chelate ligands in the side chain. Such coordination polymers containing ferrocenyl-substituted carboxylate and bipyridine-based ligands are very rare. The solution-state differential pulse voltammetries of polymers 1-4 were determined. The results indicate that the half-wave potential of the ferrocenyl moieties is influenced by the Pb(II) ions in polymer 1 and strongly influenced by Zn(II), Cd(II), or Pb(II) ions in polymers 2-4. The thermal properties of the four polymers were also investigated.  相似文献   

15.
A series of Zn(II), Cd(II), Co(II), Co(III) and Mn(III) complexes with the Schiff base [(CH3)2NCH2CH2N=CHC6H3(OH)(OMe)], LH, derived from 2-dimethylaminoethylamine and o-vanillin, has been synthesised and structures of all the products have been established by X-ray crystallography. In the cases of zinc and cadmium, dimeric complexes [Zn(LH)2(NCS)] [Zn2(L)(mu(1,1)-CH3COO)(NCS)3] (1), [Cd2(L)2(Cl)2] (2) and [Cd2(L)2(NCS)2] (3), and for cobalt and manganese, monomeric complexes [Co(LH)2(NCS)]2 [Co(NCS)4] (4), [Co(LH)2(NCS)]ClO4 (5), [Co(L)(N3)(o-vanillinate)] x 0.5 MeOH (6) and [Mn(LH)2(MeOH)2](ClO4)3 (7), are formed with various terminal ligands. All the complexes have been characterised by elemental analysis and IR spectra. UV-Vis and NMR spectroscopy, magnetic, and electrochemical studies, were also carried out where feasible. The Schiff base functions as a bi-, tri- or tetra-dentate chelating agent and coordinates via the protonated or deprotonated phenolic oxygen, amine and imine nitrogens, and only in case of 1 with the methoxy oxygen atoms, to the metal ion leading to the formation of mono- or bi-metallic complexes.  相似文献   

16.
The employment of a strategy based on nucleophilic substitution, rather than Schiff base condensation, for the preparation of 1,2,4-triazole-based ligands has been investigated and has led to the synthesis of two new ligands, 4-amino-3,5-bis{[N-(2-pyridylmethyl)-N-(4-toluenesulfonyl)amino]methyl}-4H-1,2,4-triazole (TsPMAT, 14) and 4-amino-3,5-bis{[(2-pyridylmethyl)amino]methyl}-4H-1,2,4-triazole (PMAT, 15). These are the first examples of bis(terdentate) ligands incorporating the 1,2,4-triazole unit. TsPMAT (14) forms a dinuclear 2:2 complex with Co(BF4)2.6 H2O even when reacted in a metal-to-ligand molar ratio of 2:1. Similarly, the reaction of PMAT (15) with Mn(ClO4)2.6H2O or M(BF4)2.6 H2O (M=Fe, Co, Ni, Zn) in a ligand-to-metal molar ratio of 1:1 has afforded a series of complexes with the general formula [M(II) (2)(PMAT)2]X4. The metal centres in these complexes of TsPMAT (14) and PMAT (15) are encapsulated by two ligand molecules and doubly bridged by the N2 units of the 1,2,4-triazole moieties, which gives rise to N6 coordination spheres that are strongly distorted from octahedral, as evidenced by the X-ray crystal structure analyses of [Co(II) (2)(TsPMAT)(2)](BF(4))(4)6 MeCN (246 MeCN) and [Fe(II) 2(PMAT)2](BF4)4DMF (27DMF). Studies of the magnetic properties of [Co(II) 2(TsPMAT)2](BF4)4.4 H2O (244 H2O), [Mn(II) 2(PMAT)2](ClO4)4 (26), and [Co(II) 2(PMAT)2](BF4)4 (28) have revealed weak antiferromagnetic coupling (J=-3.3, -0.16, and -2.4 cm(-1), respectively) between the two metal centres in these complexes.  相似文献   

17.
Coordination complexes of the ligand H3L [1,3-bis(3-oxo-3-phenylpropionyl)-2-hydroxy-5-methylbenzene] with Cu(II) are reported. Clusters showing various nuclearities or modes of supramolecular organization have been prepared by slightly changing the reaction conditions and have been crystallographically characterized. The reaction of H3L with one equivalent of Cu(OAc)2 in DMF yields the dinuclear complex [Cu2(HL)2(dmf)2] (1). Reaction in MeOH of H3L with an increased amount of metal, in the form of Cu(NO3)2, and excess strong base (nBu4NOH) affords the cluster [Cu8(L)2(OMe)8(NO3)2] (2). Complex 2 is a dimer of two linear [Cu4] arrays bridged by methoxide ligands, where the polynucleating ligand is fully deprotonated. The [Cu4]2 clusters are linked to each other by NO3- bridges to form one-dimensional coordination polymers. The link between [Cu8] units and their relative spatial positioning can be modified by changing the anion of the Cu(II) salt, as demonstrated by the synthesis of the cluster polymers [Cu8(L)2(OMe)8Cl2] (3) and [Cu8(L)(OMe)7.86Br2.14] (4), where only NO3- has been replaced by Cl- or Br-, respectively. Similarly, when ClO4- is used, compound [Cu8(L)2(OMe)8(ClO4)2(MeOH)4] (5) can be isolated. It contains independent [Cu8] units. A slight change in the stoichiometry of the reaction leading to 2 affords the related complex catena-[Cu4(L)(OMe)3(NO3)2(H2O)0.36] (6). This polymer contains essentially the same [Cu4] moiety as 2, albeit organized in a completely different arrangement. Each [Cu4] unit in 6 is linked by OMe- ligands to two such equivalent groups to form an infinite chain. Magnetic susceptibility measurements reveal weak antiferromagnetic exchange between Cu(II) centers in 1 (J = -0.73 cm(-1)) and strong antiferromagnetic coupling within [Cu4] chains in 2, 5, and 6 (most negative J values of -113.8 and -177.3 cm(-1) for 2 and 6, respectively).  相似文献   

18.
The synthesis and magnetic properties of the compounds [HNEt(3)][Fe(2)(OMe)(Ph-sao)(2) (Ph-saoH)(2)].5MeOH (1.5MeOH), [Fe(3)O(Et-sao)(O(2)CPh)(5)(MeOH)(2)].3MeOH (2.3MeOH), [Fe(4)(Me-sao)(4)(Me-saoH)(4)] (3), [HNEt(3)](2)[Fe(6)O(2)(Me-sao)(4)(SO(4))(2)(OMe)(4)(MeOH)(2)] (4), [Fe(8)O(3)(Me-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (5), [Fe(8)O(3)(Et-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (6), and [Fe(8)O(3)(Ph-sao)(3)(tea)(teaH)(3)(O(2)CMe)(3)] (7) are reported (Me-saoH(2) is 2'-hydroxyacetophenone oxime, Et-saoH(2) is 2'-hydroxypropiophenone oxime and Ph-saoH(2) is 2-hydroxybenzophenone oxime). 1-7 are the first Fe(III) compounds synthesised using the derivatised salicylaldoxime ligands, R-saoH(2). 1 is prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Ph-saoH(2) in the presence of NEt(3) in MeOH; 2 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Et-saoH(2) and NaO(2)CPh in the presence of NEt(4)OH in MeOH; 3 prepared by treatment of Fe(ClO(4))(2).6H(2)O with Me-saoH(2) and NaO(2)CCMe(3) in the presence of NEt(4)OH in MeOH; and 4 prepared by treatment of Fe(2)(SO(4))(3).6H(2)O with Me-saoH(2) in the presence of NEt(3) in MeOH. 4 is a rare example of a polynuclear iron complex containing a coordinated SO(4)(2-) ion. Compounds 5-7 are prepared by treatment of Fe(O(2)CMe)(2) with Me-saoH(2) (5), Et-saoH(2) (6), Ph-saoH(2) (7) in the presence of H(3)tea (triethanolamine) in MeOH, and represent the largest nuclearity Fe(III) clusters containing salicyladoxime-based ligands, joining a surprisingly small family of characterised octanuclear Fe complexes. Variable temperature magnetic susceptibilty measurements of 1, 3 and 5-7 reveal all five complexes possess S = 0 spin ground states; 2 possesses an S = 1/2 spin ground state, while 4 has an S = 4 +/- 1 spin ground state.  相似文献   

19.
20.
Four novel polyoxotungstates have been synthesized by reaction of the sandwich type compound [Fe (III) 4(H 2O) 10(B-beta-SbW 9O 33) 2] (6-) (noted Fe 4(H 2O) 10Sb 2W 18) with ethylenediamine (en) and/or oxalate (ox) ligands under various conditions. The one-dimensional (1D) compound [enH 2] 3[Fe (III) 4(H 2O) 8(SbW 9O 33) 2].20H 2O ( 1) is isolated at 130 degrees C and results from the elimination of two water molecules and the condensation of the polyoxotungstate precursor. The reaction of Fe 4(H 2O) 10Sb 2W 18 with oxalate ligands affords the molecular complex Na 14[Fe (III) 4(ox) 4(H 2O) 2(SbW 9O 33) 2].60H 2O ( 2) where two organic ligands substitute four water molecules, while the same reaction in the presence of en molecules at 130 degrees C leads to the formation of the functionalized 1D chain [enH 2] 7[Fe (III) 4(ox) 4(SbW 9O 33) 2].14H 2O ( 3) with protonated ethylenediamine counterions. Finally, at 160 degrees C a rearrangement of the Fe 4(H 2O) 10Sb 2W 18 polyoxotungstate is observed, and the sandwich type compound [enH 2] 5[Fe (II) 2Fe (II) 2(enH) 2(Fe (III)W 9O 34) 2].24H 2O ( 4) crystallizes. In 4, the heteroelement is a Fe (III) ion, and the water molecules on the two outer Fe (II) centers are bound to pendant monoprotonated en ligands. The four compounds have been characterized by IR spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. A detailed study of the magnetic properties of the mixed-valent hexanuclear iron complex in 4 shows evidence of an S = 5 ground-state because of spin frustration effects. A quantification of the electronic parameters characterizing the ground state ( D = +1.12 cm (-1), E/ D = 0.15) confirms that polyoxotungstate ligands induce large magnetic anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号