首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Letter, a general framework of the variational iteration method (VIM) is presented for solving systems of linear and nonlinear partial differential equations (PDEs). In VIM, a correction functional is constructed by a general Lagrange's multiplier which can be identified via a variational theory. VIM yields an approximate solution in the form of a rapid convergent series. Comparison with the exact solutions shows that VIM is a powerful method for the solution of linear and nonlinear systems of PDEs.  相似文献   

2.
The generalized ZK–BBM equation is solved using iterative scheme of the Adomian decomposition method (ADM) and variational iteration method (VIM). A dark and a kink soliton solutions of the generalized ZK–BBM equation are obtained under initial conditions. The convergence analysis of the ADM and VIM solution shows that these solutions are convergent. The comparison of the ADM and VIM solutions with the exact solution shows that the solutions of the generalized ZK–BBM equation by the iterative methods are almost exact. The absolute errors show that the accuracy and efficiency of the ADM and VIM depend on the problem and its domain. It is found that the iterative scheme of Adomian decomposition method and variational iteration method are quite efficient for the soliton solution of the generalized ZK–BBM equation.  相似文献   

3.
In this research, two powerful analytical methods are introduced to handle nonlinear good Boussinesq, heat transfer and coupled Burgers' equations. One is the homotopy-perturbation method (HPM) and the other is the variational iteration method (VIM). VIM is used to construct correction functionals using general Lagrange multipliers identified optimally via the variational theory. HPM converts a difficult problem into a simple one, which can be easily handled. The results attained in this paper confirm the idea that HPM and VIM are powerful mathematical tools and that they can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.  相似文献   

4.
The scattering of light by dielectric particles much larger than the wavelength of incident light is attributed to diffraction, external reflection and outgoing refracted waves. This paper focuses on diffraction and external reflection by faceted particles, which can be calculated semi-analytically based on physical optics. Three approximate methods; the surface-integral method (SIM), the volume-integral method (VIM), and the diffraction plus reflection pattern from ray optics (DPR) are compared. Four elements of the amplitude scattering matrix in the SIM and the VIM are presented in an explicit form. Of interest is that diffraction and external reflection are separable in the SIM, whereas they are combined in the VIM. A feature of zero forward reflection is noticed in the SIM. The applicability of the DPR method is restricted to particles with random orientations. In the manner of van de Hulst, we develop a new technique to compute the reflection pattern of randomly oriented convex particles using spheres with the same refractive index, resulting in an improvement in the precision of the reflection calculation in near-forward and near-backward directions. The accuracy of the aforementioned three methods is investigated by comparing their results with those from the discrete-dipole-approximation (DDA) method for hexagonal particles at the refractive index of 1.3+i1.0. For particles with fixed orientations, it is found that the SIM and the VIM are comparable in accuracy and applicable when the size parameter is on the order of 20. The ray-spreading effect on the phase function is evident from the results of various size parameters. For randomly oriented particles, the DPR is more efficient than the SIM and the VIM.  相似文献   

5.
An analytical solution is presented for nonlinear surface wave propagation. A variational iteration method (VIM) was employed and time-dependent profiles of the surface elevation level and velocity obtained analytically for different initial conditions. It is shown that the VIM used here is a flexible and accurate approach and that it can rapidly converge to the same results obtained by the Adomian decomposition method.  相似文献   

6.
This article discusses the effectiveness of a fresh analytical method in solving a prey-predator problem, which is described as a system of two nonlinear ordinary differential equations. The method of interest is the multistage variational iteration method (MVIM), which provides a slight modification of the classical variational iteration method (VIM). We shall compare solutions of the classical VIM along with MVIM and match them against the conventional numerical method, Runge-Kutta (RK4) (fourth-order).  相似文献   

7.
We consider solitary patterns solutions of generalized Benjamin–Bona–Mahony equations (shortly gBBM). The variational iteration method (shortly VIM) is applied for the numerical solution subject to appropriate initial condition. The numerical solutions of our model equation are calculated in the form of convergence power series with easily computable components. The VIM performs extremely well in terms of accuracy, efficiently, simplicity, stability and reliability.  相似文献   

8.
Instead of finding a small parameter for solving nonlinear problems through perturbation method, a new analytical method called He's variational iteration method (VIM) is introduced to be applied to solve nonlinear heat transfer equations in this Letter. In this research, variational iteration method is used to solve an unsteady nonlinear convective-radiative equation and a nonlinear convective-radiative-conduction equation containing two small parameters of ε1 and ε2 and evaluate the efficiency of straight fins. VIM can apply to the nonlinear equations with boundary or initial conditions defined in different points just with developing the correction functional using the extra parameters such as Cn, as used in this Letter.  相似文献   

9.
In this Letter, we purpose to solve nonlinear equations arising in heat transfer through the He's variational iteration method (VIM) and show that it is strongly and simply capable of solving a large class of linear or nonlinear differential equations without the tangible restriction of sensitivity to the degree of the nonlinear term and also is very user friend because it reduces the size of calculations besides, its iterations are direct and straightforward. VIM can apply to the nonlinear equations with boundary or initial conditions defined in different points just with developing the correction functional using the extra parameters such as cncn, as used in this Letter.  相似文献   

10.
The variational iteration method (VIM) proposed by Ji-Huan He is a new analytical method for solving linear and nonlinear equations. In this paper, the variational iteration method has been applied in solving nth-order fuzzy linear differential equations with fuzzy initial conditions. This method is illustrated by solving several examples.  相似文献   

11.
In this work, we introduce a framework for analytic treatment of Laplace equation with Dirichlet and Neumann boundary conditions. Exact solutions are developed by using the He's variational iteration method (VIM). The work confirms the power of the method in reducing the size of calculations.  相似文献   

12.
The effect of vibration frequency on the mechanical properties of general grade polypropylene (PP) prepared by two types of vibration injection molding (VIM) was investigated. With the application of vibration injection molding, the mechanical properties of isotactic PP are improved. The yield strength was upgraded with the increment of vibration frequency and a peak occurs at a particular frequency for each VIM. The elongation at break was also raised by increased vibration frequency, and the vibration frequency also improves impact strength. Self‐reinforcing and self‐toughening polypropylene molded parts were found at high vibration frequency. The wide angle X‐ray diffraction (WAXD) curves and scanning electronic micrograph (SEM) micrographs have shown that, in the vibration field, the enhancement of mechanical properties can be attributed to the occurrence of a γ‐phase crystalline structure and a more pronounced elongation in shape than obtained by conventional injection moldings. In addition, smaller crystals of the β‐phase crystal form improve toughness.  相似文献   

13.
Perturbation methods depend on a small parameter which is difficult to be found for real-life nonlinear problems. To overcome this shortcoming, two new but powerful analytical methods are introduced to solve nonlinear heat transfer problems in this Letter; one is He's variational iteration method (VIM) and the other is the homotopy–perturbation method (HPM). Nonlinear convective–radiative cooling equations are used as examples to illustrate the simple solution procedures. These methods are useful and practical for solving the nonlinear heat diffusion equation, which is associated with variable thermal conductivity condition. Comparison of the results obtained by both methods with exact solutions reveals that both methods are tremendously effective.  相似文献   

14.
《Journal of Molecular Liquids》2006,123(2-3):124-129
In this work, based on the variational inequality minimizing (VIM) theory of statistical thermodynamics and using the (6,12) Lennard-Jones potential function as an effective pair potential (EPP), analytical expressions for the temperature and density dependencies of the EPP parameters have been obtained. The resulting equation of state can predict thermodynamic properties such as internal energy and Helmholtz free energy for simple dense fluids such as Ar, CO, N2, and CH4 with differences less than 5%.  相似文献   

15.
In this paper, we introduce conformable variational iteration method (C-VIM), conformable fractional reduced differential transform method (CFRDTM) and conformable homotopy analysis method (C-HAM). Between these methods, the C-VIM is introduced for the first time for fractional partial differential equations (FPDEs). These methods are new versions of well-known VIM, RDTM and HAM. In addition, above-mentioned techniques are based on new defined conformable fractional derivative to solve linear and non-linear conformable FPDEs. Firstly, we present some basic definitions and general algorithm for proposal methods to solve linear and non-linear FPDEs. Secondly, to understand better, the presented new methods are supported by some examples. Finally, the obtained results are illustrated by the aid of graphics and the tables. The applications show that these new techniques C-VIM, CFRDTM and C-HAM are extremely reliable and highly accurate and it provides a significant improvement in solving linear and non-linear FPDEs.  相似文献   

16.
This paper investigates the numerical solution of the uncertain inverse heat conduction problem. Uncertainties present in the system parameters are modelled through triangular convex normalized fuzzy sets. In the solution process, double parametric forms of fuzzy numbers are used with the variational iteration method(VIM). This problem first computes the uncertain temperature distribution in the domain. Next, when the uncertain temperature measurements in the domain are known, the functions describing the uncertain temperature and heat flux on the boundary are reconstructed. Related example problems are solved using the present procedure. We have also compared the present results with those in [Inf.Sci.(2008) 178 1917] along with homotopy perturbation method(HPM) and [Int. Commun. Heat Mass Transfer(2012) 3930] in the special cases to demonstrate the validity and applicability.  相似文献   

17.
ParameterOptimizingExperimentforLaserShock┐procesingonAnti┐fatigueand┐FracturePropertyofMetalCAILanYANGJichangRENNaifei(Jiang...  相似文献   

18.
基于背景特征参数的激光雷达目标检测   总被引:1,自引:0,他引:1  
平庆伟 《光学学报》2008,28(s2):304-307
激光雷达的弱小目标检测是激光雷达的关键技术, 其主要研究难点之一是在低信噪比下, 可用于区分目标与背景噪声的特征少。研究的对象是激光雷达的远距离目标回波, 主要指空中飞机目标。根据试验得到的数据, 发现目标点在背景中往往是一些孤立的点, 与背景的相关性较小。而背景中的任一点与前后背景点相关性较强, 可以用周围的点进行线形或非线性表示。为解决低信噪比下激光雷达的目标检测问题, 提出了基于背景特征参数的目标检测算法。运用高阶统计量作为背景特征值对杂波数据进行处理。在一个小区域内, 背景的高阶统计量不会有很大的起伏, 而目标在它所在的区域内具有相对突出的变化。信噪比得以提高, 然后通过恒虚警检测和多帧相关检测, 获取真正的目标。试验结果表明该方法非常有效, 实时性强, 具有较高的实用价值。  相似文献   

19.
杨萍  侯威  封国林 《计算物理》2011,28(6):875-882
k阶最近邻距离混合点过程分解模型的判断条件进行修正,使该模型的适用范围更接近于真实.数值试验发现,参数R的理论值较大或者较小均不影响模型适用范围的判断条件.对适用范围的理论临界值可能产生影响的主要是该临界值附近的R分析临界值及其附近R与相应的理论值之间的差异,结合计算值,对所确定的临界值进行修正.结果发现:修正后的临界值-般都小于原临界值;无论临界值是否修正,点的个数对临界值的影响相似,即数据点数目较少时,临界值较大,数据点数目较大时,临界值较小;临界状态下,k的初始有效值基本随着数据点数目的增加而有所增加.  相似文献   

20.
采用溶胶凝胶法在载波片上制备了SiO2/TiO2复合薄膜。研究了TiO2含量、热处理温度、热处理时间、薄膜层数及溶胶陈化时间对其可见光透过率的影响。结果表明:复合薄膜的可见光透过率随TiO2含量的增加而降低;当TiO2含量为20%时,薄膜会出现"变白"现象;当热处理温度为80℃时,透过率最高;当TiO2含量为30%时,溶胶陈化时间为3天,镀膜两次,80℃/3h热处理所得到的薄膜透过率可达到基体的100%,耐磨性良好。初步检测显示,该薄膜具有一定的光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号