首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
利用红外和拉曼光谱技术研究了Li在不同浓度、不同溶剂组成的LiBF4/N,N-二甲基甲酰胺-乙腈、LiBF4/N,N-二甲基甲酰胺-四氢呋喃电解质溶液中的优先溶剂化现象. 红外和拉曼光谱的分析表明, Li主要与DMF分子相互作用, 导致该分子的C=O伸缩振动谱带、N—C=O形变谱带、CH3摇摆谱带等发生了分裂. Li与其它溶剂分子的相互作用较弱, 谱带的分裂现象并不明显. Li溶剂化数的计算显示, Li第一溶剂化层内DMF分子的数目一般大于2, 这说明 Li在混合溶剂体系内优先与DMF分子相互作用. 量子化学计算支持了这一结论.  相似文献   

2.
采用CCSD(T)方法研究了范德华分子体系Xe—N2O复合物的势能面和振转光谱性质,研究表明,该势能面有两个极小点,分别对应T构型和线性Xe—ONN构型,采用离散变量表象和Lanczos算法计算了体系的振转能级,计算结果表明,CCSD(T)势能面支持97个振动束缚态,并对能级进行了指认,计算得到的Xe—N2O转动跃迁频率与实验值吻合得很好。  相似文献   

3.
4-硝基-1,3-丁二烯基胺分子的氢键效应   总被引:1,自引:0,他引:1  
孙元红  赵珂  王传奎 《化学学报》2005,63(12):1116-1120
在从头计算的水平上, 利用杂化密度泛函理论研究了溶剂对4-硝基-1,3-丁二烯基胺分子的几何结构、分子内的电荷分布和电荷转移态的能量漂移的影响. 在四种极性溶剂中, 我们构造了包括氢键作用的超分子结构. 分别研究了由极化连续模型模拟的溶剂和溶质分子的长程相互作用, 溶剂和溶质分子的氢键作用, 以及溶剂和溶质分子的整体作用对分子结构和性质的影响. 研究结果表明氢键作用引起了溶质分子结构和性质的较大变化, 从而将明显地影响该类分子的非线性光学性质. 因此, 在模拟溶剂效应时需要考虑氢键作用.  相似文献   

4.
LiCl、MgCl_2和CaCl_2乙醇溶液体系的溶剂化研究   总被引:1,自引:0,他引:1  
利用红外光谱技术及量子化学方法研究了LiCl、MgCl2和CaCl2在乙醇溶液中的离子溶剂化作用现象。乙醇溶液C—O振动峰的变化及O—H伸缩振动峰发生的蓝移表明,金属离子与乙醇分子发生了相互作用。通过量子化学方法对金属离子的配合物结构进行了优化和热力学计算,并利用波恩方程理论计算出单个离子的溶剂化自由能,对比量子化学方法计算得出的吉布斯自由能,可以得到溶液中离子存在的稳定构型,验证溶液中发生了溶剂化现象。  相似文献   

5.
MgCl2/甲醇溶液的近红外光谱研究及量子计算   总被引:4,自引:0,他引:4  
吴晓静  许晓娜 《化学学报》2009,67(6):535-540
利用近红外光谱研究了MgCl2/甲醇溶液中的氢键种类及其变化和溶液离子化作用. 近红外光谱结果分析表明, Mg2+与溶剂发生了强烈的相互作用导致溶液中的氢键发生变化. 随着MgCl2浓度的增加, 多聚体氢键(δ-OHs)减少, 低聚体和二聚体氢键(γ-OHs)增加, OHs总数维持不变. 通过对光谱曲线的分解拟合, 定量地计算了不同浓度范围(0.21~0.62 mol•kg-1)内Mg2+的溶剂化数为5.5到5.0. 并利用量子化学方法对溶剂化数为5和6的配合物结构进行优化及热力学性质的计算, 通过光谱变化及理论计算推断Cl-可能会以氢键结合甲醇分子的形式存在.  相似文献   

6.
轩小朋  王键吉  赵培正  赵扬 《化学学报》2007,65(22):2510-2514
利用红外和拉曼光谱技术研究了Li在不同浓度、不同溶剂组成的LiBF4/N,N-二甲基甲酰胺-乙腈、LiBF4/N,N-二甲基甲酰胺-四氢呋喃电解质溶液中的优先溶剂化现象. 红外和拉曼光谱的分析表明, Li主要与DMF分子相互作用, 导致该分子的C=O伸缩振动谱带、N—C=O形变谱带、CH3摇摆谱带等发生了分裂. Li与其它溶剂分子的相互作用较弱, 谱带的分裂现象并不明显. Li溶剂化数的计算显示, Li第一溶剂化层内DMF分子的数目一般大于2, 这说明 Li在混合溶剂体系内优先与DMF分子相互作用. 量子化学计算支持了这一结论.  相似文献   

7.
范德华复合物C6H5CH3…N2的共振双光子电离光谱   总被引:2,自引:0,他引:2  
由复合物C6H5CH3…N2共振双光子电离光谱获得了复合物分子间范德华振动模式和N2的内转动的大量信息.通过对比同位素分子C6D5CD3…N2的光谱,我们合理地归属了所观察到的C6H5CH3…N2复合物的所有谱线.由光解离碎片的机理分析,推得复合物C6H5CH3…N2的激发态和基态的键能大约是494和474 cm-1,与理论计算值非常接近.  相似文献   

8.
本文根据正则系综(T,V,N)的统计力学的蒙特卡罗方法,提出了在溶剂化过程中由于溶质分子和溶剂分子相互作用而引起正则系综中亥姆霍兹自由能(功函)A 变化的理论计算。并通过改进的分子间相互作用势,对核酸硷基腺嘌呤稀溶液进行蒙特卡罗模拟处理,求得在溶剂化过程中由于腺嘌呤分子与水分子相互作用而引起亥姆霍兹自由能(功函)、热焓、内能和构型熵的变化,以及包括溶剂分子间(水分子间)、溶质分子、溶剂分子之间相互作用总能量的正则平均。  相似文献   

9.
用密度泛函理论方法研究了气相和水溶液中Gd(H2O)n^3+(n=8,9)化合物的结构和相对稳定性,其中水溶剂效应利用极化连续介质方法结合多种溶质空腔模型进行模拟.气相计算得到的化合物结构与实验观察结果一致.计算结果表明,在气相中9配位Gd(H2O)9^3+比8配位Gd(H2O)8^3+稳定,而在水溶液中稳定顺序刚好相反,这一结果不依赖于计算中采用的空腔模型种类,而且也与实验结果吻合.最后,通过采用各种空腔模型计算Gd^3+的水合自由能,并与实验值比较,发现当化合物只包含第一层配位水分子时,UA0、UAHF及UAKS空腔模型最适合研究Gd^3+在水溶液中的性质.  相似文献   

10.
吴晓静  张楠  潘燕 《化学通报》2011,74(6):545-550
利用红外光谱和量子化学计算方法研究了LiNO3/N,N-二甲基甲酰胺(DMF)溶液中离子溶剂化和离子缔合现象,得出了阳离子和阴离子在溶液中的存在形式以及DMF分子间自身的内部结构,并对(DMF)n结构进行了优化及热力学性质计算.在此基础上,提出阳离子进入溶剂化层的机理是,DMF分子之间相互作用形成不同形式的(DMF)n...  相似文献   

11.
Solvent clustering around attractive solutes is an important feature of supercritical solvation. We examine here the effects of the local density enhancement on solvatochromic shifts in electronic absorption and emission spectra in supercritical CO2. We use molecular dynamics (MD) simulation to study the spectral line shifts for model diatomic solutes that become more polar upon electronic excitation. The electronic transition is modeled as either a change from a quadrupolar to a dipolar solute charge distribution or as an increase in the magnitude of the solute dipole. Our main focus is on the density dependence of the line shifts at 320 K, which corresponds to about 1.05 times the solvent critical temperature, Tc, but results for higher temperatures are also obtained in order to determine the behavior of the line shifts in the absence of local density enhancement. We find that the extent of local density enhancement at 1.05Tc is strongly correlated with solute-solvent electrostatic attraction and that the density dependence of the emission line shifts resembles the behavior of the effective local densities, rho(eff), obtained from the first-shell coordination numbers. The differences that are seen are shown to be due to solute-solvent orientational correlations which provide an additional source of enhancement for electrostatic solvation energies and spectral line shifts.  相似文献   

12.
Electronic absorption and emission spectra of 10-bis(phenylethynyl)anthracene (PEA) and coumarin 153 (C153) are measured as functions of composition along the bubble-point curve at 25 degrees C in CO2-expanded cyclohexane (c-C6H12), acetonitrile (CH3CN), and methanol (CH3OH). The nonlinear dependence of the spectral frequencies on composition suggests substantial preferential solvation of both solutes by the liquid components of these mixtures. Estimates of enrichment factors (local mole fraction of a component divided by its bulk value) based on the assumption that spectral shifts are linearly related to local composition are quite large (approximately 10) in the cases of the C153/CH3CN + CO2 and C153/CH3OH + CO2 systems at high xCO2. Computer simulations of anthracene, the chromophore of PEA, and C153 in these three CO2-expanded liquids are used to clarify the relationship between local composition and spectral shift. A semiempirical model consisting of additive electrostatic and dispersive interactions is able to capture the main features observed experimentally in all six solute/solvent combinations. The simulations show that the commonly used assumption of a linear relation between spectral shifts and local compositions grossly exaggerates the extent of preferential solvation in these mixtures. The collective nature of electrostatic solvation and the composition dependence of the solute's coordination number are shown to be responsible for the breakdown of this assumption.  相似文献   

13.
In this paper we have developed an effective computational procedure for the structural and dynamical investigation of ions in aqueous solutions. Quantum mechanical potential energy surfaces for the interaction of a transition metal ion with a water molecule have been calculated taking into account the effect of bulk solvent by the polarizable continuum model (PCM). The effective ion-water interactions have been fitted by suitable analytical potentials, and have been utilized in molecular dynamics (MD) simulations to obtain structural and dynamical properties of the ionic aqueous solutions. This procedure has been successfully applied to the Co2+-H2O open-shell system and, for the first time, Co-oxygen and Co-hydrogen pair potential functions have been determined and employed in MD simulations. The reliability of the whole procedure has been assessed by applying it also to the Zn2+ and Ni2+ aqueous solutions, and the structural and dynamical properties of the three systems have been calculated by means of MD simulations and have been found to be in very good agreement with experimental results. The structural parameters of the first solvation shells issuing from the MD simulations provide an effective complement to extended X-ray absorption fine structure (EXAFS) experiments.  相似文献   

14.
The theory of solvent-induced shifts of the absorption and fluorescence band spectra of a solute is well known and has been tested for a multitude of systems. However, there are only few applications to polymers. By a direct comparison of the spectral shifts in liquid solvents with those in polymers it is possible to determine the microenvironment of the solutes in polymers within the frame of this theory. Polyethylene terephthalate as fabric and film was chosen as model polymer. The spectral shifts of 15 fluorescing solutes in this polymer as well as in 10 solvents with widely differing refractive indices n and permittivities ? were measured and fitted to the equations given by the theory of the solvent effect. It is found that interactions with the permanent dipoles of polyethylene terephthalate may be neglected within the limits of accuracy attainable for this polymer and the chosen solutes. Dispersion forces dominate the solvent effect. The refractive indices effective at the site of the solute molecules are n = 1.66 for the fabric and n = 1.70 for the film.  相似文献   

15.
To understand the modifications of the hydrogen bond network of water by ionic solutes, power spectra as well as static distributions of the potential energies of tagged solvent molecules and solute ions have been computed from molecular dynamics simulations of aqueous NaCl solutions. The key power spectral features of interest are the presence of high-frequency peaks due to localized vibrational modes, the existence of a multiple time scale or 1/falpha frequency regime characteristic of networked liquids, and the frequency of crossover from 1/falpha type behavior to white noise. Hydrophilic solutes, such as the sodium cation and the chloride anion, are shown to mirror the multiple time scale behavior of the hydrogen bond network fluctuations, unlike hydrophobic solutes which display essentially white noise spectra. While the power spectra associated with tagged H2O molecules are not very sensitive to concentration in the intermediate frequency 1/falpha regime, the crossover to white noise is shifted to lower frequencies on going from pure solvent to aqueous alkali halide solutions. This suggests that new and relatively slow time scales enter the picture, possibly associated with processes such as migration of water molecules from the hydration shell to the bulk or conversion of contact ion pairs into solvent-separated ion pairs which translate into variations in equilibrium transport properties of salt solutions with concentration. For anions, cations, and solvent molecules, the trends in the alpha exponents of the multiple time scale region and the self-diffusivities are found to be strongly correlated.  相似文献   

16.
A detailed analysis of the origins of vibrational frequency shifts of diatomic molecules (I2 and ICl) in a rare gas (Xe) liquid is presented. Specifically, vibrationally adiabatic mixed quantum-classical molecular dynamics simulations are used to obtain the instantaneous frequency shifts and correlate the shifts to solvent configurations. With this approach, important mechanistic questions are addressed, including the following: How many solvent atoms determine the frequency shift? What solvent atom configurations lead to blue shifts, and which lead to red shifts? What is the effect of solute asymmetry? The mechanistic analysis can be generally applied and should be useful in understanding what information is provided by infrared and Raman spectra about the environment of the probed vibrational mode.  相似文献   

17.
18.
All-atom molecular dynamics (MD) simulation and the NMR spectra are used to investi-gate the interactions in N-glycylglycine aqueous solution. Different types of atoms exhibit different capability in forming hydrogen bonds by the radial distribution function analysis. Some typical dominant aggregates are found in different types of hydrogen bonds by the statistical hydrogen-bonding network. Moreover, temperature-dependent NMR are used to compare with the results of the MD simulations. The chemical shifts of the three hydrogen atoms all decrease with the temperature increasing which reveals that the hydrogen bonds are dominant in the glycylglycine aqueous solution. And the NMR results show agreement with the MD simulations. All-atom MD simulations and NMR spectra are successful in revealing the structures and interactions in the N-glycylglycine-water mixtures.  相似文献   

19.
Molecular dynamics simulations of the infrared spectrum of a generic simple polar diatomic in a liquid nonpolar solvent allow to reproduce the different prototypical experimental line shapes of this kind of systems. This is feasible by using different solute-solvent anisotropic potentials at fixed thermodynamic conditions. In the limit cases, the rotation of the diatomic is explained in terms of a quasifree motion or a rotational diffusion evolution and the spectra show a doublet structure formed by P and R branches or a unique collapsed branch, respectively. When the profile contains three branches, including an intense Q branch in the vicinity of the center of the band, rotational evolution presents a particular hindering that can be understood by studying the influence on rotational spectral densities of the different time scales involved in rotational relaxation. Cancellation/enhancement effects among spectral density terms arising from intermediate and long times (0.4-1 ps) are essential to understand rotational hindering.  相似文献   

20.
Hydration of ion pairs is an essential process in various physicochemical phenomena occurring in solutions. Isolated clusters of an ion pair solvated with finite number of waters have been considered as a model system for the critical evaluation of microscopic interactions involved in the process, and theoretical studies have contributed exclusively to the subject up to now. Here we report the first experimental characterization of structure and internal dynamics of hydrated ion pairs, NaCl-(H2O)n (n = 1-3). The measurements of their rotational spectra have proven that the clusters have cyclic forms, in which Na+ and Cl- ions are strongly interacted with the O and H atoms of the solvent molecules, respectively. The Na-Cl distance shows a pronounced increase with the successive addition of water molecules. The separation for n = 3 approaches the value predicted for the contact ion-pair state in aqueous solution by recent molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号