首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
本文使用虹外光谱及膨胀计等方法,对聚四亚甲基醚二醇类多嵌段共聚物的软链段结晶性进行了研究。在聚醚-聚酯多嵌段共聚物中(PTMEG>60%),其软链段结晶的熔点和结晶速率均随PTMEG含量减少而下降。而在聚醚-聚脲胺酯多嵌段共聚物中,由于N—H和C—O—C之间氢键的作用,即使在低温下,其软链段也难于结晶。此外,高倍拉伸会提高上述二类多嵌段共聚物中软链段结晶的熔点和结晶速率。  相似文献   

2.
本工作将Leibler等近期关于含非晶两嵌段共聚物“稀固体溶液”的胶束理论推广并应用到含结晶三嵌段共聚物的“稀固体溶液”.对微量聚氧化乙烯-聚苯乙烯-聚氧化乙烯三嵌段共聚物/聚氧化乙烯均聚物共混体系的结晶行为进行了研究.结果表明,共聚物胶束在共混体系的结晶过程中可以起到成核剂的作用.这对改善结晶均聚物的性能具有一定的应用价值.  相似文献   

3.
 本工作将Leibler等近期关于含非晶两嵌段共聚物“稀固体溶液”的胶束理论推广并应用到含结晶三嵌段共聚物的“稀固体溶液”.对微量聚氧化乙烯-聚苯乙烯-聚氧化乙烯三嵌段共聚物/聚氧化乙烯均聚物共混体系的结晶行为进行了研究.结果表明,共聚物胶束在共混体系的结晶过程中可以起到成核剂的作用.这对改善结晶均聚物的性能具有一定的应用价值.  相似文献   

4.
将Leibler, Whitmore和Mayes等近期关于非晶嵌段共聚物“稀固体溶液”的理论应用于嵌段聚共聚物结晶型“稀固体溶液”结晶行为的研究。发现球状共聚物胶束既可起成核剂作用, 也可起抑制成核作用。报导了当共聚物胶束由球形变为非球形时, 共聚物胶束的上述作用都会发生较大的变化, 并根据Leibler和Mayes分别提出的球形和非球形胶束理论解释了这一实验现象。  相似文献   

5.
将Leibler,Whitmore和Mayes等近期关于非晶嵌段共聚物“稀固体溶液”的理论应用于嵌段聚共聚物结晶型“稀固体溶液”结晶行为的研究。发现球状共聚物胶束既可起成核剂作用,也可起抑制成核作用。报导了当共聚物胶束由球形变为非球形时,共聚物胶束的上述作用都会发生较大的变化,并根据Leibler和Mayes分别提出的球形和非球形胶束理论解释了这一实验现象。  相似文献   

6.
我们用端基官能化方法实现两种聚合反应的结合, 成功地制备了AB型双嵌段共聚物PCL-b-PSt和BAB型三嵌段共聚物PSt-b-PCL-b-PSt. 本文利用上述方法, 将酶促开环聚合和原子转移自由基聚合有机地结合起来, 合成了AB型嵌段共聚物-聚己内酯/聚甲基丙烯酸环氧丙酯(PCL-b-PGMA. 此嵌段共聚物具有良好的生物相容性, 在现代生物领域具有广泛的应用前景.  相似文献   

7.
聚对苯二甲酸丁二酯-聚四亚甲基醚多嵌段共聚物的研究   总被引:5,自引:1,他引:5  
合成了硬段含量和软段分子量不同的聚对苯二甲酸丁二酯-聚四亚甲基醚(PBT-PTMG)多嵌段共聚物。研究了硬段含量和软段分子量对嵌段共聚合过程的影响。当软段分子量较大、硬段含量较高时,在嵌段共缩聚过程中有均聚物伴生。当软段分子量在2000左右,硬段含量在20%左右时,基本上不生成均聚物。硬段重量含量为 20%的低硬段 PBT-PTMG多嵌段共聚物是结晶的。由它纺成的弹体纤维有良好的力学性能和弹性回复。热处理能改进纤维的弹性回复。  相似文献   

8.
用热分析、动态粘弹谱、红外光谱和小角X光散射的实验结果,证实了在聚对苯二甲酸丁二酯-聚己内酰胺嵌段共聚物(简称PBT-PA_6)的无定形区中,两嵌段间具有良好的相容性,两嵌段间有氢键生成。  相似文献   

9.
以单甲氧基聚乙二醇伯胺(m PEG-NH2)作为大分子引发剂,引发γ-炔丙基-L-谷氨酸-N-羧基-环内酸酐(NCA)开环聚合的方法,合成了侧链上含有炔基的聚乙二醇-b-聚(γ-炔丙基-L-谷氨酸)两嵌段共聚物(PEG-b-PPLG).进一步通过巯基-炔基加成的"点击"化学方法,对两嵌段共聚物中聚氨基酸PPLG嵌段分别修饰了普通疏水性的饱和烷烃、具有超疏水性质的全氟代烷烃,并利用红外光谱、圆二色光谱、动态光散射和透射电子显微镜等技术,对合成的两嵌段共聚物在水溶液及有机溶剂四氢呋喃(THF)中的自组装性质进行了研究.研究发现两嵌段共聚物修饰前后,聚氨基酸嵌段在水和THF中都能保持一定的α-螺旋的构象,并进一步自组装形成以α-螺旋的聚氨基酸嵌段为内核、PEG嵌段为外壳的纳米聚集结构.  相似文献   

10.
嵌段共聚物的微相分离和形态   总被引:1,自引:0,他引:1  
嵌段共聚物的微相分离行为和形态的研究是当前多相高聚物研究中众所瞩目的研究内容,无论从基础理论和应用实际都有其极为重要的意义,因此在这方面的研究已有不少报道,并日趋深入。 以最简单的嵌段共聚物A—B为例,如聚苯乙烯—聚异戊二烯二嵌段共聚物  相似文献   

11.
The self‐assembly of head‐tail type block copolymers composed of polyamidoamine dendron head block and poly(L ‐lysine) (PLL) tail block was studied using a light scattering technique and transmission electron microscopy. A PLL tail block in a head‐tail type block copolymer exhibits a coil‐to‐helix transition as a result of the change in solvent quality from water to methanol. When the PLL tail block takes a helical conformation in high methanol content, the resulting head‐tail type block copolymer has a defined three‐dimensional structure like that of a protein molecule. Self‐assemblies of such block copolymers having a totally fixed molecular shape spontaneously form polymersome‐like self‐assemblies with an extremely narrow size distribution through converging to a thermodynamically stable assembling state. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1217–1223, 2009  相似文献   

12.
The synthesis of diblock copolymers of poly(N-isopropylacrylamide) (PNIPAM) and poly(vinyl acetate) (PVAc) was performed by macromolecular design via interchange of xanthates (MADIX) process. Following the preparation of methyl (isopropoxycarbonothioyl) sulfanyl acetate (MIPCTSA) as chain transfer agent, it was reacted with vinyl acetate to obtain PVAc macro-chain transfer agent. Then, block copolymerization was completed by successive addition of N-isopropylacrylamide (NIPAM). 1H NMR spectroscopy confirmed the presence of both blocks in the copolymer structure, with the expected composition based on the feed ratio. Size Exclusion Chromatography (SEC) was used to investigate the relative values of molecular characteristics. Only 20% of PVAc was converted to block copolymer. The resultant block copolymer structures were further examined in terms of their morphologies as well as critical micelle concentration (CMC) by using ESEM and Fluorescence Excitation Spectroscopic techniques, respectively. Morphological characterization confirmed amphiphilic block copolymer formation with the existence of mainly ca. 100 nm well distributed micelles. The thermo responsive amphiphilic behavior of the block copolymer solutions were followed by Dynamic Light Scattering (DLS) technique.  相似文献   

13.
The morphology, crystallization and self nucleation behavior of double crystalline diblock copolymers of poly(p-dioxanone) (PPDX) and poly(ϵ-caprolactone) (PCL) with different compositions have been studied by different techniques, including optical microscopy (OM), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The two blocks crystallize in a single coincident exotherm when cooled from the melt. The self-nucleation technique is able to separate into two exotherms the crystallization of each block. We have gathered evidences indicating that the PPDX block can nucleate the PCL block within the copolymers regardless of the composition. This effect is responsible for the lack of homogeneous nucleation or fractionated crystallization of the PCL block even when it constitutes a minor phase within the copolymer (25% or less). Nevertheless, we were able to show that decreasing amounts of PCL within the diblock copolymer still produces confinement effects that retard the crystallization kinetics of the PCL component and decrease the Avrami index. On the other hand evidence for confinement was also obtained for the PPDX block, since as its content is reduced within the copolymer, a depression in its self-nucleation and annealing temperatures were observed.  相似文献   

14.
We have prepared an amphiphilic oxazoline block copolymer of hydrophilic poly(2-methyl-2-oxazoline) and hydrophobic poly[2-(2-perfluorooctyl)ethyl-2-oxazoline] chains. By controlling the length and composition of polymer chains, we found that this fluorinated block copolymer can be readily dissolved in water. Furthermore, we can achieve a stable surface coating of the fluorinated block copolymer by dissolving the copolymer in water, then coating the aqueous copolymer solution onto surfaces of nonwater-soluble polymers. This is a simple and useful method of modifying the surface character of polymer substrates. We have found that the polyether urethane (PEU) coated by block copolymer has a different surface chemistry and biological reactivity than the uncoated PEU. From XPS analysis, we found the fluorinated copolymer was coated on PEU (atomic % of F: 31.3 on coated PEU, 0.3 on uncoated). The two surfaces have different affinities for biological molecules. Specifically, the fibrinogen adsorption on the fluorinated copolymer-coated PEU was 62 ± 39 ng/cm2, compared to a value of 156 ± 99 ng/cm2 for uncoated PEU. In an ex vivo evaluation of platelet adhesion, the surface of coated PEU attached a few white cells while uncoated PEU was covered with activated platelets. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Ordered poly(ethylene)‐poly(vinylcyclohexane) (PE‐PVCH) block copolymers are employed to study the crystallization of tethered PE in confined geometries. The high Tg of the PVCH component of these materials forces PE chains to crystallize in well‐defined geometries dictated by the mesophase structure of the block copolymer. Effects of chain tethering on crystallization are examined through comparison of singly‐tethered PE chains in PE‐PVCH (EV) diblocks and doubly‐tethered PE in PVCH‐PE‐PVCH (VEV) triblocks. Crystallinity is independent of the block copolymer mesophase structure in both the EV and VEV systems, although crystallinity in VEV depends on the molecular weight of the PE block of the copolymer. Melting temperature data indicate that spatial confinement reduces crystallite size in EV and VEV, and that the double tethering of PE chains in VEV reduces crystallite size further through topological constraints. Crystal nucleation and growth depend strongly on the type of microstructure in both EV and VEV block copolymers. Differences in the overall rate of crystallization are correlated with the dimensional continuity of the PE microdomains. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37:2053–2068, 1999  相似文献   

16.
The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent.  相似文献   

17.
嵌段共聚物傅里叶变换拉曼光谱   总被引:3,自引:0,他引:3  
王靖  郭晨  刘会洲 《分析化学》2001,29(1):35-37
用傅里叶变换拉曼光谱(FT-Paman)研究了聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)嵌段共聚物的无水样品,发现某些谱带对PEO0-PPO-PEO嵌段共聚物的结构和构象变化敏感,其中某些峰的相对强度的PPO/PEO比率和共聚物的构象有关,研究表明PluronicF68和F88具有一些反式构象的螺旋结构,PluronicP103(P123)是无规则结构,其它的嵌段共聚物处于二者之间.  相似文献   

18.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

19.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

20.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号