首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substoichiometric extraction method with nitroso-R salt (NRS) has been studied for the determination of trace Co in crud. The Co-NRS complex is extracted substoichiometrically into Capriquat-CHCl3 at pH 6.5-9.0 in 20 min of shaking time. The analytical results obtained by the method are within 3% of relative error in the determination range of 5 to 50 micrograms. The proposed method is simple and has sensitivity of 0.5 micrograms, though Fe(II), Ni(II) and Cu(II) seriously interfere. The results applied for the determination of trace Co in crud are described.  相似文献   

2.
Adsorbents based on silica sequentially modified by polyhexamethylene guanidine and nitroso-R salt or nitroso-N salt are proposed for the preconcentration and adsorption-photometric determination of iron. It is shown that these adsorbents quantitatively recovered Fe(III) at pH 3.5–4.0 and Fe(II) at pH 4.5–7.0. In the adsorption of Fe(III) and Fe(II), intensely colored green complexes formed on the adsorbent surface. Based on the absence of signals in EPR spectra, it was concluded that iron in the oxidation state +2 was included into surface complexes with nitroso-R salt or nitroso-N salt. When Fe(III) interacted with nitroso-R salt or nitroso-N salt immobilized on the adsorbent surface, it was reduced to Fe(II). Diffuse reflection spectra of the surface complexes of iron(II) were broad bands with maxima at 720 and 710 nm. Procedures of the adsorption-photometric determination of iron in natural waters and snow samples were developed with the limit of detection of 0.05 μg of iron per 0.2 g of the adsorbent.  相似文献   

3.
The silica gel with 1-(2-thiasolylazo)-2-naphthol adsorbed was obtained. The adsorption of Cu(II) and Zn(II) from an aqueous solution onto loaded silica gel was studied. The capabilities of 1-(2-thiasolylazo)-2-naphthol immobilized for Cu(II) and Zn(II) preconcentration, visual and diffusion reflectance spectroscopic detection was evaluated. The detection limits were 10 and 15 microg.l(-1), respectively. Visual test scales for metal ions determination in the range 0.65-13 microg per sample were worked out. The developed methods were applied to Cu(II) and Zn(II) determination in natural and tap water. The obtained results agreed well with the reported value.  相似文献   

4.
A very simple and selective spectrophotometric method for simultaneous determination of Co(II) and Ni(II) by 1-(2-pyridylazo) 2-naphthol (PAN), in micellar media, using H-point standard addition method (HPSAM) is described. The ligand and its metal complexes (Co(II)-PAN and Ni(II)-PAN) were made water-soluble by the neutral surfactant Triton X-100, and therefore, no extraction with organic solvents was required. Formation of both the complexes was complete within 10 min at pH 9 (adjusted by ammonia buffer). The linear range was 0.10-2.00 microg ml(-1) for Co(II) and 0.05-1.50 microg ml(-1) for Ni(II). The relative standard deviation (R.S.D.) for the simultaneous determination of 0.50 microg ml(-1) each of Co(II) and Ni(II) was 2.32 and 3.13%, respectively. Interference effects of common anions and cations were studied and the method was applied to simultaneous determination of Co(II) and Ni(II) in alloy samples. The method was compared with derivative spectrophotometric method.  相似文献   

5.
Lucifer yellow CH is shown to be a highly selective fluorescent reagent for the determination of Cu(III) in the microg L(-1) concentration range. The fluorophore is statically quenched by Cu(II); the carbohydrazide group was assigned as the complexing part of the dye molecule. A total range of Cu(II) determination from 0.06 mg L(-1) (1 micromol L(-1)) to 6.3 mg L(-2) (100 micromol L(-1)) with a limit of detection of 0.019 mg L(-1) (0.3 micromol L(-1)) was obtained, along with surprisingly high selectivity. There was no interference from alkaline and earth alkaline metal ions. The cross sensitivity to heavy metal ions was evaluated by the separate solution method and by competitive binding experiments. Calibration plots are shown for Cu(II) determination at different pH and the dissociation constant was determined. The application of the reagent was demonstrated by the determination of the Cu(II) content of tap water samples.  相似文献   

6.
Derivative spectrophotometry has been applied for the elimination of the mutual spectral interferences and the analysis of binary, ternary and quaternary mixtures of complexes of microgram amounts of divalent ions of cobalt, copper, lead, manganese, nickel, zinc and iron with 4-(pyridyl-2-azo)resorcinol (PAR) in the range of 0.05-1 microg/ml (0.2-4 microg/ml for lead). The first derivative spectra can be used for the determination of both components in the majority of binary mixtures except of Cu(II) and Co(II) and systems containing Fe(II). The second and the third derivative spectra allow to determine one constituent in some ternary and quaternary mixtures.  相似文献   

7.
Four sensitive, simple and specific methods were developed for the determination of desloratadine (DSL), a new antihistaminic drug in pharmaceutical preparations and biological fluids. Methods I and II are based on coupling DSL with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) in borate buffer of pH 7.6 where a yellow colored reaction product was obtained and measured spectrophotometrically at 485 nm (Method I). The same product could be measured spectrofluorometrically at 538 nm after excitation at 480 nm (Method II). Methods III and IV, on the other hand, involved derivatization of DSL with 2,4-dinitrofluorobenzene (DNFB) in borate buffer of pH 9.0 producing a yellow colored product that absorbs maximally at 375 nm (Method III). The same derivative was determined after separation adopting HPLC (Method IV). The separation was performed on a column packed with cyanopropyl bonded stationary phase equilibrated with a mobile phase composed of acetonitrile-water (60 : 40, v/v) at a flow rate of 1.0 ml min(-1) with UV detection at 375 nm. The calibration curves were linear over the concentration ranges of 0.5-6, 0.02-0.4, 1-10 and 1-30 microg ml(-1) for Methods I, II, III and IV, respectively. The lower detection limits (LOD) were 0.112, 0.004, 0.172 and 0.290 microg ml(-1), respectively, for the four methods. The limits of quantification (LOQ) were 0.340, 0.012, 0.522 and 0.890 microg ml(-1) for Methods I, II, III and IV, respectively. The proposed methods were applied to the determination of desloratadine in its tablets and the results were in agreement with those obtained using a reference method. Furthermore, the spectrofluorometric method (Method II) was extended to the in-vitro determination of the drug in spiked human plasma, with a mean percentage recovery (n=4) of 99.7+/-3.54. Interference arising from endogenous amino acids has been overcome using solid phase extraction. The proposed methods are highly specific for determination of DSL in the presence of the parent drug loratadine. A proposal for the reaction pathways is postulated.  相似文献   

8.
A conducting polymer modified electrode based on the incorporation of 4,5-dihydroxy-3-(p-sulfophenylazo)-2,7-naphthalene disulfonic acid, SPADNS, as an anionic complexing ligand into polypyrrole film during electropolymerization was prepared. The electroanalysis of copper(II) in this modified electrode was achieved by medium exchange and differential pulse voltammetry. Copper ions were accumulated from ammonia buffer on the electrode surface by the formation of a chemical complex at open circuit. The resulting electrode with complexed Cu(2+) was then transferred to an acetate buffer and subjected to anodic stripping voltammetry. The analytical performance was evaluated and, finally, linear calibration graphs were obtained in the concentration range of 2 - 250 ng ml(-1) for Cu(II). The detection limit was found to be 1.1 ng ml(-1) and RSD was obtained at 3.1 and 1.9% for two different concentrations. Many coexisting metal ions had little or no effect on the determination of copper. The developed method was applied to Cu(II) determination in natural water and human hair samples. Also, the rapid and convenient regeneration of electrode allows the use of a single modified electrode in multiple analyses.  相似文献   

9.
A new method for direct spectrophotometric determination of cadmium with 4-(2-pyridylazo)-resorcinol is reported. Absorption maximum, molar absorptivity and Sandell's sensitivity of the 1:1 (M:L) complex are 510 nm, 2.5 x 10(5) l mol(-1) cm(-1) and 3.55 ng cm(-2), respectively. A linear calibration graph is obtained up to 4.49 microg ml(-1). The zero-crossing measurement technique is found suitable for the direct measurement of the first-derivative value at the specified wavelengths. Cadmium(II) (0.42-9.2 microg ml(-1)) and mercury(II) (0.35-7.4 microg ml(-1)) in different ratios have been determined simultaneously. A critical evaluation of the proposed method is performed by statistical analysis of the experimental data. The developed method was applied to the simultaneous spectrophotometric determination of Cd and Hg in some synthetic mixtures and was found to give satisfactory results.  相似文献   

10.
HPLC was coupled with sequential injection (SI) for simultaneous analyses of some heavy metals, including Co(II), Ni(II), Cu(II), and Fe(II). 2-(5-Nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) was employed as a derivatizing reagent for sensitive spectrophotometric detection by online precolumn derivatization. The SI system offers an automated handling of sample and reagent, online precolumn derivatization, and propulsion of derivatives to the HPLC injection loop. The metal-nitro-PAPS complexes were separated on a C(18)-muBondapak column (3.9x300 mm(2)). Using the proposed SI-HPLC system, determination of four metal ions by means of nitro-PAPS complexes was achieved within 13 min in which the parallel of derivatization and separation were processed at the same time. Linear calibration graphs were obtained in the ranges of 0.005-0.250 mg/L for Cu(II), 0.007-1.000 mg/L for Co(II), 0.005-0.075 mg/L for Ni(II), and 0.005-0.100 mg/L for Fe(II). The system provides means for automation with good precision and minimizing error in solution handling with the RSD of less than 6%. The detection limits obtained were 2 microg/L for Cu(II) and Co(II), and 1 microg/L for Ni(II) and Fe(II). The method was successfully applied for the determination of metal ions in various samples, including milk powder for infant, mineral supplements, local wines, and drinking water.  相似文献   

11.
The reaction of aluminium(III) with Hydroxynaphtol Blue (HNB) in aqueous media at apparent pH 5.5 results in a red complex that is stable for at least 4 hr. Beer's Law is obeyed up to 1.6 microg/ml of aluminium(III) with an apparent molar absorptivity of 1.66 x 10(4) l.mol(-1). cm(-1) at 569 nm. This paper proposes procedures for aluminium(III) determination by ordinary and first-derivative spectrophotometry. The results demonstrated that the linear dynamic range is 0.03-1.60 microg/ml for ordinary spectrophotometry and 11.8-320.0 ng/ml for first derivative spectrophotometry. The HNB is not selectivity for aluminium, but the addition of EDTA allows the aluminium determination in the presence of accepted amounts of Ca(II), Mg(II), Mn(II), Ba(II), Sr(II), Cd(II), Pb(II), La(III), In(III), Bi(III) and Zn(II). The interference of Cu(II) and Hg(II) can be masked by thiosulphate. Ions such as UO(2)(II), Mo(VI), Co(II), Ti(IV) and PO(4)(III) do interfere seriously. This method was applied for aluminium determination in copper-base alloy, zinc-base alloy, magnesium-base alloy, iron ore, manganese ore, cement, dolomite, feldspar and limestone. The results indicated high accuracy and precision.  相似文献   

12.
Carvalho MS  Fraga IC  Neto KC  Silva Filho EQ 《Talanta》1996,43(10):1675-1680
The present work describes a selective, rapid and economical method for the determination of cobalt using the 2-(2-benzothiazolylazo)-p-cresol (BTAC) as a spectrophotometric reagent associated with a solid extraction on polyurethane foam. The BTAC reacts with Co(II) in the presence of Triton-X100 surfactant forming a green complex with maximum absorption at 615 nm. The reaction is used for cobalt determination within a pH range of 6.50-7.50, with an apparent molar absorptivity of 1.62 x 10(4) L mol(-1) cm(-1). Beer's Law is obeyed for a concentration of at least 1.60 microg ml(-1). A selective procedure is proposed for cobalt determination in the presence of Fe(II), Hg(II), Zn(II) and Cu(II) up to milligram levels using masking agents. Polyurethane foam is used for the preconcentration and separation of cobalt from thiocyanate media and this procedure is applied to its determination in nickel salts and steel alloys.  相似文献   

13.
A new, sensitive and simple bead injection spectroscopy-flow injection analysis (BIS-FIA) sensor with spectrophotometric detection, using a commercially available flow-cell, is described to the determination of biparametric mixtures. As an analytical model, the metallic mixture Cu(II) and Zn(II) has been chosen. The flow-cell (Hellma 138-OS) is filled by injecting in the flow system 300 microl of a homogeneous bead suspension of an anion exchanger gel (Sephadex QAE A-25) previously loaded with the chromogenic reagent 2-carboxyl-2-hydroxy-5-sulfoformazylbenzene (Zincon). A sequential reaction of Cu(II) and Zn(II) with Zincon to form two complexes is performed on the bead sensing support and the absorbance is monitored at 627 nm, after two successive injections from the mixture solution. The sample containing these metal ions is injected into the first carrier (deionized water, pH 5.9), and Cu(II) selectively reacts with Zincon on the beads, developing the analytical signal. Then, 600 microl of 2 M HCl is injected to decompose the complex, and the carrier solution is changed. At pH 11 (second carrier) both Cu(II) and Zn(II) react with the chromogenic reagent, the absorbance now corresponding to both analytes. The eluent is again injected to descompose both complexes. After three analyses the sensing bead surface is not regenerated. Then, beads are automatically discarded from the flow cell by reversal of the flow, and instantaneously transported out of the system. So the procedure exploits the combination of the concepts of flow-through renewable sensors with bead injection spectroscopy. Using a sample volume of 1000 microl, the calibration graph for Cu(II) is linear over the range 0.05 to 1 microg ml(-1) and for Zn(II) from 0.1 to 1.8 microg ml(-1) in the presence of each other. RSDs (%) lower than 5% are obtained for both analytes. The sensor is satisfactorily applied to individual determination or mixture resolution in waters, pharmaceuticals, soils and human hair samples.  相似文献   

14.
Fast-flow spherical homogeneous agarose beads were prepared by an emulsification method, and were cross-linked and activated by repeated treatment with allylbromide and bromine/water, followed by alkali. Bis(2-aminopyridyl)dioxime (APD) was synthesized by the reaction of 2-aminopyridine, and dichloroglyoxime and characterized by melting-point as well as IR, 1HNMR, 13CNMR and MS spectroscopies. APD was chemically linked to activated agarose beads to be employed for the column preconcentration of metal ions. Capacity measurements for eight metal ions indicated a high selectivity of the adsorbent towards Cu2+ with a capacity of 25.7 micromol per ml packed adsorbent. A factorial design was used for optimization of the effects of 5 different variables on the recovery of Cu2+. Under the optimized conditions, Cu2+ was quantitatively accumulated on a 0.25 ml packed column of the adsorbent in the pH range of 4 to 6, and simply eluted with 2 ml of a 1 mol 1(-1) hydrochloric acid solution. The column could tolerate salt concentrations up to 0.5 mol 1(-1), sample flow rates up to 15 ml min(-1), and sample volumes beyond 1000 ml. Matrix ions of Na+, Mg2+ and Ca2+ and potentially interfering ions of Ni2+, Cd2+, Zn2+, Fe3+ and Co2+ with relatively high concentrations did not show any significant effect on the analyte's signal. Preconcentration factors up to 500 and a detection limit of 0.16 microg 1(-1) were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked copper in river water and seawater samples resulted in quantitative recoveries.  相似文献   

15.
A new kinetic-spectrophotometric method is described for the determination of ultra trace amounts of Pd(II). The methods based on catalytic action of Pd(II) on the oxidation of pyrogallol red (PGR) with hydrogen peroxide at pH 9.7. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the PGR at 540 nm, for the first 4.5 min from initiation of the reaction. Calibration curve was linear in the range of 0.02-1.00 microg ml(-1) Pd(II). The limit of detection is 0.017 microg ml(-1) Pd(II). The relative standard deviation (R.S.D.) for ten replicate analyses of 0.03 and 0.60 microg ml(-1) Pd(II) was 1.5 and 0.9%, respectively. The influence of more than 40 potential interfering ions was studied for the selectivity. The proposed method was used for the determination of palladium in catalytic material.  相似文献   

16.
A resin-phase extraction method has been optimized for the trace determination of tin(II) by ETAAS. Tin(II) was extracted on a finely divided anion exchange resin as the complex with ammonium pyrrolidinedithiocarbamate (APDC). The resin was collected on a membrane filter and then dispersed in 1.00 ml of 1 mol l(-1) nitric acid containing 100 microg of Pd(II) and 60 microg of Ni(II). The resulting resin suspension was subjected to GFAAS. The proposed method was applied to the determination of tin(II) in hydrochloric acid.  相似文献   

17.
Ensafi AA  Khayamian T  Atabati M 《Talanta》2002,57(4):785-793
An adsorption differential pulse stripping method for the simultaneous determination of molybdenum and copper based on the formation of their complexes with cupferron (benzene, N-hydroxy-N-nitroso) is proposed. The optimum experimental conditions were obtained 0.010 mM cupferron, pH 3.0, accumulation potential of -0.15 V versus Ag/AgCl, accumulation time of 60 s, scan rate of 10 mV s(-1) and pulse height of 50 mV. Molybdenum and copper peak currents were observed at -0.16 and +0.02 V, respectively. A principal component artificial neural network (PC-ANN) was utilized for the analysis of the voltammogram data. A three layer back-propagation network was used with sigmoidal transfer function for the hidden and the output layers. The linear dynamic ranges were 5.0-60.0 and 0.1-20.0 ng ml(-1) for Cu(II) and Mo(VI), respectively. The detection limit was 0.06 ng ml(-1) for Mo(VI) and 0.20 ng ml(-1) for Cu(II). The capability of the method for the analysis of real samples was evaluated by the determination of molybdenum and copper in river water, tap water, and alloy.  相似文献   

18.
Pyrrolidinedithiocarbamate (PDTC) chelates of Zn(II), Cu(II), Ni(II), Co(III), Fe(III), Mn(II), Cr(III), and VO(II) were analysed by capillary GC on a DB-1701 column (30 m x 0.25 mm id) with flame ionisation detection (FID). Linear calibrations were attained within "1-30 microg/mL" for Ni(II), Fe(III), Mn(II), Cr(III), Cu(II), and VO(II), and within "2-50 microg/mL" for Co(III) and Zn(II). The limits of detection were in the "150-500 ng/mL" range, corresponding to 15-50 pg amounts reaching the FID system. The optimised method was applied to the determination of Cu(II) and Ni(II) in coins, and that of Zn(II), Cu(II), Ni(II), Fe(III), Mn(II), Cr(III), and VO(II) in pharmaceutical preparations with relative standard deviations within 1.1-5.2%. The results obtained are in good agreement with sewage water samples and the declared values for the pharmaceutical formulations, or with the results of AAS of metal contents in coins, pharmaceutical preparations, and sewage water samples.  相似文献   

19.
A flow injection procedure for the sequential spectrophotometric determination of iron(II) and iron(III) in pharmaceutical products is described. The method is based on the catalytic effect of iron(II) on the oxidation of iodide by bromate at pH = 4.0. The reaction was monitored spectrophotometrically by measuring the absorbance of produced triiodide ion at 352 nm. The activating effect for the catalysis of iron(II) was extremely exhibited in the presence of oxalate ions, while oxalate acted as a masking agent for iron(III). The iron(III) in a sample solution could be determined by passing through a Cd-Hg reductor column introduced in the FIA system to reduce iron(III) to iron(II), which allows total iron determination. Under the optimum conditions, iron(II) and iron(III) could be determined over the range of 0.05 - 5.0 and 0.10 - 5.0 microg ml(-1), respectively with a sampling rate of 17 +/- 5 h(-1). The experimental limits of detection were 0.03 and 0.04 microg ml(-1) for iron(II) and iron(III), respectively. The proposed method was successfully applied to the speciation of iron in pharmaceutical products.  相似文献   

20.
The spectrophotometric determination of Cu(II) with an anthraquinone derivative (Alizarin Red S) has been investigated. The experimental conditions, such as the pH of the sample and concentration of ligand, were optimized. This method is simple and sensitive for determination of Cu(II) ion. The interfering effects of diverse ions were investigated. Copper ion was determined by measuring the absorbance of the Cu(II)-ARS complex at 510 nm. Beer's law was obeyed over the concentration range of 0.011 - 0.320 mmol dm(-3) and the detection limit (S/N = 3) was 0.038 microg cm(-3). The relative standard deviation at 20 microg cm(-3) was 1.02% (n = 5). The method was applied for real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号