首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 876 毫秒
1.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to study the molecular surface structures of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends and the copolymer between PS and PMMA (PS-co-PMMA) in air, supplemented by atomic force microscopy (AFM) and contact angle goniometer. Both the blend and the copolymer have equal weight amounts of the two components. SFG results show that both components, PS and PMMA, can segregate to the surface of the blend and the copolymer before annealing, although PMMA has a slightly higher surface tension. Upon annealing both SFG results and contact angle measurements indicate that the PS segregates to the surface of the PS/PMMA blend more but no change occurs on the PS-co-PMMA surface. AFM images show that the copolymer surface is flat but the 1:1 PS/PMMA blend has a rougher surface with island like domains present. The annealing effect on the blend surface morphology has also been investigated. We collected amide SFG signals from interfacial fibrinogen molecules at the copolymer or blend/protein solution interfaces as a function of time. Different time-dependent SFG signal changes have been observed, showing that different surfaces of the blend and the copolymer mediate fibrinogen adsorption behavior differently.  相似文献   

2.
The segregation behavior of binary polymer blends at hydrophilic solid sapphire and air interfaces was investigated by infrared-visible sum frequency generation (SFG) vibrational spectroscopy. SFG spectra were collected from a bulk miscible blend consisting of identical molecular weight (approximately 54,000) and similar surface free energy (29-35 dyn/cm) components of atactic polypropylene (aPP) and aspecific poly(ethylene-co-propylene) rubber (aEPR). Characteristic CH resonances of the blend were contrasted with those of the individual components at both buried (sapphire/polymer) and free (air/polymer) interfaces. Preferential segregation of the aPP component was observed after annealing at both air/polymer and sapphire/polymer interfaces. SFG spectra revealed ordering of the polymer backbone segments with the methylene (CH2) groups perpendicular to the surface at the sapphire interface and the methyl (CH3) groups upright at the air interface. The SFG results indicate that the surface composition can be determined from the peak intensities that are characteristic of each component and that conformational entropy played a likely role in surface segregation. aPP occupied a smaller free volume at the surface because of a statistically smaller segment length (aPP is more flexible and has a shorter length). In addition, the high density of the ordered CH3 side branches enhanced the surface activity by allowing the long-chain backbone segments of aPP to order at the surface.  相似文献   

3.
We have studied the orientation of the train segments of a poly(methyl methacrylate) (PMMA) adsorbed layer at the CCl4-sapphire interface using surface-sensitive IR-visible sum frequency generation (SFG) spectroscopy. The SFG spectra of PMMA chains adsorbed on sapphire indicate ordered ester methyl groups. In comparison, we did not observe any significant contributions from the backbone methylene and alpha methyl groups, suggesting that these groups are disordered. No change in the structure of the adsorbed layer is observed upon cooling the solvent below the theta temperature; this is consistent with the picture of flat adsorbed chains on the surface. Interestingly, the orientation of the ester methyl groups of a spin-coated PMMA film at the PMMA-sapphire interface is similar to that of the same groups in the chains adsorbed from solution.  相似文献   

4.
采用ATRP技术合成具有不同聚合度的末端连接甲基丙烯酸全氟辛基乙酯(FMA)单元的聚甲基丙烯酸丁酯(PBMAm-ec-PFMAn).利用和频振动光谱(SFG)和表面张力测定技术研究了各种氟化聚合物溶液的气/液界面结构.发现PBMAm-ec-PFMAn甲苯溶液的表面活性及其气/液界面的结构与两种结构单元数密切相关.当PFMA聚合度(n)大约为4和6时,聚合物溶液的表面张力随着PBMA聚合度的增加从21增加到25mN/m(该值与PBMA均聚物溶液相同).SFG的研究结果表明PBMA段较长时溶液表面被PBMA所占据.PBMA段较短时,PFMA组分吸附在溶液表面,排列比较有序且紧密堆积.当PBMA末端只有1个FMA单元时,其甲苯溶液的表面张力随PBMA段长稍有增加(从22增加到23mN/m),其值介于21与25mN/m之间.研究表明当PBMA段较短时,可能聚合物中的氟化组分吸附在溶液表面,但其排列的有序性较差.随着PBMA聚合度的增加,氟化组分与PBMA组分可能同时占据在溶液表面,这时其表面张力大约为23mN/m.  相似文献   

5.
Sum frequency generation (SFG) vibrational spectroscopy has been successfully applied to study molecular structures of several poly(n-alkyl methacrylate)s (PAMAs) with different side chain lengths at the PAMA/air and PAMA/water interfaces. We have observed that the ester side chains from all PAMAs always dominate the interface, but the orientation information of the methyl end group on the side chains varies, depending on the length of the side chain. The contributions from methylene groups on the side chains have been evaluated, and the surface structures have been related to the surface tension of these polymers. Different water restructuring behaviors have been observed for different PAMAs. This phenomenon and its reversibility are strongly dependent on the glass transition temperature of each polymer, which is influenced by the side chain length. Detailed data fitting and analysis has been discussed.  相似文献   

6.
An experimental study of the equilibrium properties and of the surface rheology of Langmuir monolayers of poly(methyl methacrylate) (PMMA) at the air/water interface has been carried out as a function of polymer concentration (Γ) and molecular weight (M(w)). Dilational and shear complex elasticity moduli covering a frequency range from 10(-3) to 0.2 Hz have been discussed. It was found that the air∕water interface behaves as a poor solvent for PMMA monolayers, thus suggesting that the polymer coils take collapsed soft-disks (pancakes) shape at the interface. The equilibrium and dynamic results suggest a fluid-to-soft-glass transition as the polymer concentration increases above a critical packing fraction at constant temperature. This two-dimensional transition is in agreement with results previously discussed for the dilational rheology of poly(4-hydroxystyrene) [F. Monroy, F. Ortega, R. G. Rubio, H. Ritacco, and D. Langevin, J. Chem. Phys. 95, 056103 (2005)]. Furthermore, the Γ-dependence of the relaxation dynamics of the monolayers suggests that the gel state may be considered as a fragile soft glass.  相似文献   

7.
The surface-sensitive technique of sum frequency generation (SFG) vibrational spectroscopy has been applied to study the buried interfaces between different polymers including deuterated polystyrene (d-PS) and deuterated poly(methyl methacrylate) (d-PMMA) and a two-component silane adhesion-promoting mixture (SAPM) composed of (3-glycidoxypropyl)trimethoxysilane (gamma-GPS) and a methylvinylsiloxanol (MVS). Because of the dissolution of d-PS, no SFG CH stretching signals could be collected from the d-PS/gamma-GPS interface, and SFG signals collected from the d-PS/SAPM interface gradually disappeared over time. SFG results also showed that gamma-GPS can diffuse through the d-PMMA film. The diffusion of gamma-GPS through the d-PMMA film was confirmed by SFG studies on the interface between gamma-GPS and a d-PMMA/PS two-polymer layer system. Initially the SFG signal from the PS layer was detected. However, after gamma-GPS diffused through the d-PMMA film, the PS film was dissolved by the silane, and thus the SFG signal from PS was lost. Similar experiments have been carried out at the interface between the SAPM and the d-PMMA/PS two-polymer layer system and it was found that the diffusion time of the gamma-GPS in the SAPM through the d-PMMA film was significantly longer. These results were much different to those from previous SFG studies on the analogous PET interfaces and appear consistent with differences in solubility parameters calculated for these systems.  相似文献   

8.
Molecular structures of poly(n-butyl methacrylate) (PBMA) at the PBMA/air and PBMA/water interfaces have been studied by sum frequency generation (SFG) vibrational spectroscopy. PBMA surfaces in both air and water are dominated by the methyl groups of the ester side chains. The average orientation and orientation distribution of these methyl groups at the PBMA/air and PBMA/water interfaces are different, indicating that surface restructuring occurs when the PBMA sample contacts water. Analysis shows that the orientation distribution of side chain methyl groups on the PBMA surface is narrower in water than that in air, indicating that the PBMA surface can be more ordered in water. To our knowledge, this is the first time that quantitative comparisons between molecular surface structures of polymers in air and in water have been made. Two assumptions on the orientation distribution function, including a Gaussian distribution and a formula based on the maximum entropy approach, are used in the analysis. It has been found that the orientation angle distribution function deduced by the Gaussian distribution and the maximum entropy distribution are quite similar, showing that the Gaussian distribution is a good approximation for the angle distribution. The effect of experimental error on the deduced orientational distribution is also discussed.  相似文献   

9.
Polyimides are widely used as chip passivation layers and organic substrates in microelectronic packaging. Plasma treatment has been used to enhance the interfacial properties of polyimides, but its molecularmechanism is not clear. In this research, the effects of polyimide surface plasma treatment on the molecular structures at corresponding polyimide/air and buried polyimide/epoxy interfaces were investigated in situ using sum frequency generation (SFG) vibrational spectroscopy. SFG results show that the polyimide backbone molecular structure was different at polyimide/air and polyimide/epoxy interfaces before and after plasma treatment. The different molecular structures at each interface indicate that structural reordering of the polyimide backbone occurred as a result of plasma treatment and contact with the epoxy adhesive. Furthermore, quantitative orientation analysis indicated that plasma treatment of polyimide surfaces altered the twist angle of the polyimide backbone at corresponding buried polyimide/epoxy interfaces. These SFG results indicate that plasma treatment of polymer surfaces can alter the molecular structure at corresponding polymer/air and buried polymer interfaces.  相似文献   

10.
To better understand the effects of interfacial molecular orientation on adhesion to plastics, the interfaces between poly(ethylene terephthalate) (PET) and different silane coupling agents were probed using sum frequency generation (SFG) vibrational spectroscopy. The polymer/air interface was dominated by the ester carbonyl, methylene, and phenyl groups. Upon contacting the PET film with the amino-functional silane 3-aminopropyltrimethoxysilane (ATMS), the ester carbonyl stretch shifted to a lower energy indicating the formation of hydrogen bonds between the polymer surface and the silane molecules. This shift was not observed when silanes that contained no hydrogen bond donors, such as (3-glycidoxypropyl)-trimethoxysilane and n-butyltrimethoxysilane, were placed into contact with the PET surface. Further evidence of silane ordering at the interface was observed as vibrational peaks attributed to the C-H stretching of the silane methoxy headgroups dominated the PET/silane spectra. It was determined that the conformation of the ATMS molecules at the interface was such that the amino endgroups were oriented toward the interface while the methoxy headgroups were directed toward the silane bulk.  相似文献   

11.
Most research on copolymers with fluorinated monomers has focused on the relationship between fluorinated monomer content and the corresponding surface structure. However, the influence of the non-fluorinated block on the surface structure of the copolymer film is unknown. Various molecular weight poly(butyl methacrylates) (PBMA) end-capped with 2-perfluorooctylethyl methacrylate (FMA) units (PBMA-ec-FMA) have been synthesized by atom transfer radical polymerization (ATRP). The effect of the PBMA block length on the surface structure and properties of the polymers both in the solid state and in solution was investigated using various techniques. X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy and X-ray diffraction (XRD) analyses indicated that longer PBMA blocks enhanced both the enrichment of the fluorinated moieties and the order of the packing orientation of the perfluoroalkyl side chains on the surface. This enhancement was attributed mainly to the molecular aggregate structure of the end-capped polymers with long PBMA blocks in the solution and to the interfacial structure at the air/liquid interface, which favors the -(CF2)7CF3 moieties self-assembling on the polymer surface during film formation. This observation suggests that the polyacrylate block structure in fluorinated diblock copolymers, in addition to the fluorinated monomer content, plays an important role in structure formation on the solid surface.  相似文献   

12.
This article presents the effect of adding poly(methyl methacrylate) (PMMA) with different molecular weights on the mechanical properties of asphalt in terms of durability, strength, and resistance to rutting. By controlling the time of reaction we obtained PMMA of two different molecular weights: PMMA1 and PMMA2. The ageing properties of polymer modified asphalts were studied using the thin film over (oven) a test. A hot storage stability test was carried out for polymer modified binder. The physical properties of asphalt modified with PMMA including penetration value and softening point were examined at two different temperatures. Resilient modulus test was evaluated by a Universal Testing Machine. Results showed that an incorporation of PMMA into asphalt binder has significantly improved its properties under studies. Indirect tensile strength test and durability performance of the modified asphalts was evaluated as well. The resulted modification was found to be dependent on the polymer molecular weight. The PMMA1 exhibited effective and cheerful results.  相似文献   

13.
Blends of poly(3-dodecyl thiophene) (PDDT) with poly(methyl methacrylate), poly(butyl methacrylate) (PBMA), and poly(methyl methacrylate-co-butyl methacrylate) (PMMA/PBMA) were studied by polarization optical microscopy, atomic-force microscopy, and absorption spectroscopy and were modeled using molecular dynamics (MD) simulations. The observed thermochromic transitions are shown to be host-matrix dependent, with PDDT/PBMA absorption spectra differing substantially from pristine PDDT. The dispersion of PDDT within PBMA matrix is observed to be greater than in the other host polymers. MD calculations of both individual PDDT molecules and molecular aggregates suggest that the distribution of dihedral angles present in the PDDT backbone is the narrowest for aggregates of PDDT embedded within a polymer matrix. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2909–2917, 1999  相似文献   

14.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

15.
Inelastic helium atom scattering has been used to investigate the vibrational dynamics at the polymer vacuum interface of poly(methyl methacrylate), polystyrene, and polybutadiene thin films on SiO(x)Si(100). Experiments were performed for a large range of surface temperatures below and above the glass transition of these three polymers. The broad multiphonon feature that arises in the inelastic scattering spectra at surface temperatures between 175 and 500 K is indicative of the excitation of a continuum of surface vibrational modes. Similarities exist in the line shapes of the scattering spectra, indicating that helium atoms scatter from groups of similar mass on the surface of these polymer thin films. The line shapes obtained were further analyzed using a semiclassical scattering model. This study has shown that quite different polymer thin films can have similar interfacial dynamics at the topmost molecular layer.  相似文献   

16.
The surface and interface morphologies of polystyrene (PS)/poly(methyl methacrylate) (PMMA) thin‐film blends and bilayers were investigated by means of atomic force microscopy (AFM) and X‐ray photoelectron spectroscopy. Spin‐coating a drop of a PS solution directly onto a PMMA bottom layer from a common solvent for both polymers yielded lateral domains that exhibited a well‐defined topographical structure. Two common solvents were used in this study. The structure of the films changed progressively as the concentration of the PS solution was varied. The formation of the blend morphology could be explained by the difference in the solubility of the two polymers in the solvent and the dewetting of PS‐rich domains from the PMMA‐rich phase. Films of the PS/PMMA blend and bilayer were annealed at temperatures above their glass‐transition temperatures for up to 70 h. All samples investigated with AFM were covered with PS droplets of various size distributions. Moreover, we investigated the evolution of the annealed PS/PMMA thin‐film blend and bilayer and gave a proper explanation for the formation of a relatively complicated interface inside a larger PS droplet. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 9–21, 2006  相似文献   

17.
Thermo-optical analysis of solution cast mixtures of poly (ethylene oxide) (POE) and poly (methyl methacrylate) (PMMA) has been carried out. Melting point depression was observed for increasing proportion of PMMA in the mixture. An analytical expression appropriate to the crystallineamorphous polymer pair has been applied to explain the melting point depression in terms of thermodynamic quantities. From this expression, the interaction parameter for the mixture has been evaluated. The influence of Mw of POE on the binary interaction parameter has been studied.  相似文献   

18.
The polar orientation and degree of conformational order of sodium dodecyl sulfate (SDS) adsorbed at the hydrophobic octadecanethiol/aqueous solution interface in the presence of poly(ethylene glycol) (PEG) has been investigated as a function of the surfactant concentration and the molecular weight of the polymer. Sum frequency generation (SFG) vibrational spectroscopy was employed to obtain spectra of interfacial surfactant; weak SFG signals from interfacial polymer were also detected for polymer molecular weights of 900 and above. The phase of the SFG spectra indicated that both the surfactant and polymer had a net orientation of their CH2 and/or CH3 groups toward the hydrophobic surface. Spectra of SDS in the presence of mixed polymer/surfactant solutions showed increasing conformational order as the surfactant concentration was raised. At the lowest surfactant concentrations, the spectra of SDS were weaker in the presence of the polymer than in its absence. All PEG molecular weights investigated, with the exception of PEG 400, gave rise to significant inhibition of ordered surfactant adsorption below the critical micelle concentration. The greatest inhibitory effect was noted for PEG 900. Probing interfacial PEG specifically through the use of perdeuterated SDS revealed that the polymer spectral intensity decreased monotonically as the surfactant concentration was increased for all polymer molecular weights where a PEG spectrum was apparent. These findings are interpreted in terms of the displacement of preadsorbed polymer as the surfactant concentration increases. This result is compatible with observations of adsorption from SDS/PEG solutions at solid/solution and solution/air interfaces made using other techniques.  相似文献   

19.
Samples of low-molecular-weight polystyrene (PS) in poly(methyl methacrylate) (PMMA) were prepared by first dissolving PS in methyl methacrylate monomer and then polymerizing the monomer. Forty-three specimens of varying number-average molecular weight (2100–49,000) and composition (5–40 wt %) of PS were prepared, and the surface morphology and phase relationships studied by scanning electron microscopy. Four distinct types of phase relationships were observed: (i) a single phase consisting of PS dissolved in PMMA; (ii) PS dispersed in PMMA; (iii) PMMA dispersed in PS; and (iv) regions of PS dispersed in PMMA coexisting with regions of PMMA dispersed in PS. Values of the size and population density of the dispersed particles are reported. Finally, the size and distribution of the dispersed particles and the various types of phase relationships are discussed in terms of the ternary polystyrene/poly(methyl methacrylate)/methyl methacrylate phase diagram.  相似文献   

20.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号