首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Prehistoric artifacts turning blue in the store rooms of the Natural History Museum in Verona, Italy recently raised serious issues for heritage materials conservation. Our analytical investigation showed that the unusual discoloration process of the flint tools is caused by the surface presence of at least three previously unknown pigmenting molecules of the triphenylmetane dyes class: 6-(bis(2,2,4-trimethyl-1,2-dihydroquinolin-6-yl)methylene)-2,2,4-trimethyl-2,6-dihydroquinolinium and its hydrogenated derivatives 2,2,4-trimethyl-6-((2,2,4-trimethyl-1,2,3,4-tetrahydroquinolin-6-yl)(2,2,4-trimethyl-1,2-dihydroquinolin-6-yl)methylene)-2,6-dihydroquinolinium and 6-(bis(2,2,4-trimethyl-1,2,3,4-tetrahydroquinolin-6-yl)methylene)-2,2,4-trimethyl-2,6-dihydroquinolinium. The peculiar formation of the molecules is possibly catalyzed within the silica pore surface starting from a well-known rubber stabilizer 2,2,4-trimethyl-1,2-dihydroquinoline released by the plastic pads flooring the storing cabinets. The investigated reaction and its surprising blue product represent a case study of the application of modern materials science to conservation and a serious warning towards the unpredictable challenges faced in the preservation of our cultural heritage.  相似文献   

2.
In this paper, a spectral collection of over 150 ATR-FT-IR spectra of materials related to cultural heritage and conservation science has been presented that have been measured in the extended region of 4000-80 cm–1 (mid-IR and far-IR region). The applicability of the spectra and, in particular, the extended spectral range, for investigation of art-related materials is demonstrated on a case study. This collection of ATRFT-IR reference spectra is freely available online (http://tera.chem.ut.ee/IR_spectra/) and is meant to be a useful tool for researchers in the field of conservation and materials science.  相似文献   

3.
This study aims to evaluate the relevance of portable Raman and portable mid-Fourier transform infrared (FTIR) reflectance instruments in monitoring the synthetic treatments applied on plaster substrates, a crucial issue in a conservation work. Some polymeric consolidants and protectives have a relatively short life owing to their degradation, and after some years the surface should be retreated. It follows that any information about the presence and composition of the products applied, their chemical transformations and their distribution on the surfaces is essential. For these purposes, conservation scientists should seek and test new in situ methods, and this is of utmost importance especially in the case of buildings, considering their large dimensions and consequent extensive mapping. The effectiveness of portable Raman and portable mid-FTIR reflectance instruments has been compared by analysing a set of laboratory specimens prepared and treated with variable amounts of products belonging to three classes of polymers; the spectroscopic investigation highlighted, for the first time, the limits and the advantages of portable Raman and portable mid-FTIR reflectance instruments in the detection of small amounts of products commonly employed for the conservation of plasters.  相似文献   

4.
Recovering adsorption energy distribution from experimental data belongs to most difficult problems of adsorption science. In the case when thermodesorption data are used as a source of information, that difficult problem is overcome by the common use of the Arrhenius plot methods. So, we decided to carry out an extensive model investigation to show, how reliable information concerning the surface energetic heterogeneity is obtained by using the Arrhenius plot methods. Like in our previous publications we have used the Statistical Rate Theory of Interfacial Transport to describe the adsorption/desorption kinetics. Our model investigations showed, that the Arrhenius plot methods, cannot provide reliable information about the surface energetic heterogeneity. Moreover, for strongly heterogeneous surfaces a linear relationship exists between the logarithm of the pre-exponential constant and the adsorption energy, for certain adsorption coverages. That kind of compensation effect has, so far, been ascribed to interactions between the adsorbed molecules. The failure of the popular Arrhenius plot method puts, as an urgent agenda, the development of reliable methods for recovering adsorption energy distribution from the thermodesorption data.  相似文献   

5.
The identification and localization of organic components in the complex stratigraphy of paintings play a crucial role in studies of painting techniques and authentication, restoration, and conservation of artworks. Much scientific effort has been expended for the development of analytical approaches suitable for the investigation and characterization of organic substances, allowing high sensitivity, specificity, and spatial resolution. Proteins (e.g., ovalbumin, casein, and collagen from different animal sources) are one of the classes of organic substances most widely used as painting materials. The analytical techniques commonly used for their analysis (micro Fourier transform infrared spectroscopy, chromatographic techniques, and proteomic approaches) have limits related to the lack of specificity or to the absence of information concerning the stratigraphic localization of the detected proteins. Immunological techniques are a promising alternative approach for the characterization of proteins in artworks. Thanks to the high specificity of antigen–antibody reactions, these techniques are widely used for the analysis of proteins in bioanalytical and clinical chemistry and recently they have been successfully applied in the field of science for conservation of cultural heritage. The present research aimed to develop an ultrasensitive chemiluminescent immunochemical procedure for the simultaneous localization of ovalbumin and bovine casein (two common proteins found in binding media or varnishes of artistic and archaeological samples) in resin-embedded painting micro cross-sections. The possibility of performing the simultaneous identification of different proteins in painting cross-sections is of particular relevance in the field of cultural heritage because samples are often small and available in a limited number; therefore, the maximum amount of information must be obtained from each of them.  相似文献   

6.
Hidden, sub-surface paint layers and features contain valuable information for the art-historical investigation of a painting's past and for its conservation for coming generations. The number of techniques available for the study of these features has been considerably extended in the last decades and established techniques have been refined.This review focuses on mobile non-destructive subsurface imaging and depth profiling techniques, which allow for the in-situ investigation of easel paintings, i.e. paintings on a portable support.Among the techniques discussed are: X-ray radiography and infrared reflectography, which are long established methods and are in use for several decades. Their capabilities of element/species specific imaging have been extended by the introduction of energy/wavelength resolved measurements.Scanning macro-X-ray fluorescence analysis made it for the first time possible to acquire elemental distribution images in-situ and optical coherence tomography allows for the non-destructive study the surface paint layers in virtual cross-sections.These techniques and their variants are presented next to other techniques, such as Terahertz imaging, Nuclear Magnetic Resonance depth profiling and established techniques for non destructive testing (thermography, ultrasonic imaging and laser based interference methods) applied in the conservation of historical paintings.Next to selected case studies the capabilities and limitations of the techniques are discussed.  相似文献   

7.
Heterogeneous catalysis is changing from an empirical art to an exact science. The various methods for the analysis of solids and surfaces, constantly refined by materials science and surface science, seem to be almost unlimited. The increasing availability of atomic resolution microscopy as well as synchrotron radiation allows the characterization of catalyst particles, surface structures, surface processes and surface intermediates. We have learned to determine the surface structure sensitivity of catalytic reactions. Thermodynamic and kinetic data of catalytic reactions are now determined routinely. Isotopic exchange and labeling experiments provide information about reactant-catalyst interactions. How much have we learned through these techniques about the nature or mechanism of heterogeneously catalyzed reactions? The following article attempts to summarize the progress and the problems encountered in mechanistic studies of C? H bond formation and activation in a hydrogen atmosphere as an example for the present state of the understanding of reaction mechanisms in heterogeneous catalysis.  相似文献   

8.
Colloid science is contributing solutions to counteract the degradation of artifacts, favoring their transfer to future generations. Advanced materials such as nanoparticles, coatings, gels and microemulsions have been assessed in conservation, spanning from archeological sites to modern and contemporary art. We give an overview of the fundamental milestones and latest innovations in conservation science, targeting solutions and tools for remedial conservation based on green nanomaterials and hybrid systems. Future perspectives and outstanding challenges in this exciting field are then outlined.  相似文献   

9.
Determining the adsorption configurations of organic molecules on surfaces, especially for relatively small molecules, is a key issue for understanding the microscopic physical and chemical processes in surface science. In this work, we have applied low-temperature ultrahigh-vacuum tip-enhanced Raman scattering (TERS) technique to distinguish the configurations of small 4,4′-bipyridine (44BPY) molecules adsorbed on the Ag(111) surface. The observed Raman spectra exhibit notable differences in the spectral features which can be assigned to three different molecular orientations, each featuring a specific fingerprint pattern based on the TERS selection rule that determines the distribution of the relative intensities of different vibrational peaks. Furthermore, such a small molecule can in turn act as a local probe to provide information on the local electric field distribution at the tip apex. Our work showcases the capability of TERS technique for obtaining information on adsorption configurations of small molecules on surfaces down to the single-molecule level, which is of fundamental importance for many applications in the fields of molecular science and surface chemistry.  相似文献   

10.
In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.  相似文献   

11.
We review the recent achievements of photoelectron microscopy (PEM), which is a rapidly developing technique that is significantly advancing the frontiers of surface and materials science. The operation principles of scanning photoelectron microscopes (SPEM), using different photon optic systems to obtain a micro-probe of sub-micrometer dimensions, and of the full-field imaging microscope, using electrostatic lenses for magnification of the irradiated sample area, are presented. The contrast mechanisms, based on photon absorption and photon-induced electron emission, are described and the expected development in the photon and electron optics and detection systems are discussed. Particular attention is paid to the present state-of-art performance of the microscopes collecting photoelectrons (PEs), which carry specific information about the lateral variations in the chemical, magnetic and electronic properties of the material under investigation. Selected results, obtained recently with instruments installed at synchrotron light facilities, are used to illustrate the potential of PEM in characterising micro-phases and dynamic processes with a lateral resolution better than 100 nm.  相似文献   

12.
X-ray diffraction (XRD) mapping consists in the acquisition of XRD patterns at each pixel (or voxel) of an area (or volume). The spatial resolution ranges from the micrometer (μXRD) to the millimeter (MA-XRD) scale, making the technique relevant for tiny samples up to large objects. Although XRD is primarily used for the identification of different materials in (complex) mixtures, additional information regarding the crystallite size, their orientation, and their in-depth distribution can also be obtained. Through mapping, these different types of information can be located on the studied sample/object. Cultural heritage objects are usually highly heterogeneous, and contain both original and later (degradation, conservation) materials. Their structural characterization is required both to determine ancient manufacturing processes and to evaluate their conservation state. Together with other mapping techniques, XRD mapping is increasingly used for these purposes. Here, the authors review applications as well as the various configurations for XRD mapping (synchrotron/laboratory X-ray source, poly-/monochromatic beam, micro/macro beam, 2D/3D, transmission/reflection mode). On-going hardware and software developments will further establish the technique as a key tool in heritage science.  相似文献   

13.
The conservation of paintings is fundamental to ensure that future generations will have access to the ideas of the grand masters who created these art pieces. Many factors, such as humidity, temperature, light, and pollutants, pose a risk to the conservation of paintings. To help with painting conservation, it is essential to be able to noninvasively study how these factors affect paintings and to develop methods to investigate their effects on painting degradation. Hence, the use of mobile nuclear magnetic resonance (NMR) as a method of investigation of paintings is gaining increased attention in the world of Heritage Science. In this mini-review, we discuss how this method was used to better understand the stratigraphy of paintings and the effect different factors have on the painting integrity, to analyze the different cleaning techniques suitable for painting conservation, and to show how mobile NMR can be used to identify forgeries. It is also important to keep in mind its limitations and build upon this information to optimize it to extend its applicability to the study of paintings and other precious objects of cultural heritage.  相似文献   

14.
The reddish-brown, brown or yellowish stains of circular or irregular shape known as foxing spots have been fully described in conservation literature but still, this phenomenon does not find any scientific agreement since many hypotheses have been raised concerning their origin. In this work a contribution to foxing definition not only focussed on its appearance but also reported on its chemical information. For this purpose foxing stains present in drawings from two Portuguese artists dated from the eighteenth to nineteenth centuries were observed under ultra-violet light and optical microscope and analysed by three non-invasive spectroscopy techniques. The observations carried out on the stains provided information on their surface morphology. The use of energy-dispersive X-ray fluorescence revealed a variation on the elemental content between foxing and paper region. Although the results from X-ray diffraction analysis showed no signs of cellulose degradation in foxing stains, Fourier-transformed infrared analysis revealed the presence of oxide groups. Both the information on the chemical nature and surface morphology of the stains achieved in this study will contribute to increase foxing formation information and develop future protocols for conservation purposes.  相似文献   

15.
 Forensic examination results play an increasingly important role in bringing many criminal investigations to a successful conclusion. The quality of the results of examinations performed in forensic science laboratories has always been the concern of the individual forensic scientist. The interpretations and results are presented in court to non-experts. Therefore, it is essential to ensure and maintain the highest standards of achievements and accuracy in forensic science. Many factors are important contributors to quality assurance in forensic science. Some unique subjects affect not only the mode of inquiry but also the way in which information is presented to the court, i.e. exhibits collection and sample handling, investigation, examination techniques, report writing and court testimony.  相似文献   

16.
17.
Paintings on canvas are complex structures created by superimposing layers of different composition. Investigations on the structure of these artworks can provide essential information on their state of conservation, pictorial technique, possible overpaintings, and in planning a proper conservation plan. Standard methods of investigation consist in sampling a limited number of fragments for stratigraphic analyses. Despite the recognized validity of these methods, they are affected by evident limitations. Nuclear magnetic resonance (NMR) profiling, often named NMR stratigraphy, is an NMR relaxometry technique applied by single-sided portable devices developed to overcome the disadvantages of microinvasive stratigraphic analyses. The potential of this approach on artworks, including wall paintings and a few examples of painted canvas, is described in the literature. In this study, NMR profiles of painting on canvas were examined by analyzing transverse relaxation time data by T2 quasi-continuous distributions and the results compared with standard stratigraphic cross-sections analysis. Combining signal intensity and T2 quasi-continuous distributions, the identification of textile, preparatory, and paint layers was enhanced. The diction “NMR stratigraphy” for these inhomogeneous layered artworks is also discussed. Indeed, unlike the stratigraphic cross-sections, NMR profiles provide information on a volume (flat slice), rather than on a surface, and the collected signal can derive from nonuniform and partially overlapping layers. This study paves the way for extensive investigations on relaxation time quasi-continuous distributions in various binder/pigment mixtures in order to improve the reliability of NMR profile as an innovative, non–invasive, and nondestructive method for analyzing paintings on canvas.  相似文献   

18.
张吉  黄希  胡东波 《大学化学》2017,32(9):35-40
化学基本原理植根于各类材质文物的保护技术中,在文物保护领域有着重要的指导地位。以化学为代表的自然科学新方法与新技术,极大地丰富了文物保护的手段,为文物保护研究提供了广阔的发展空间。  相似文献   

19.
Synchrotron radiation has become a unique tool for probing the structure of matter. It has a broad range of applications, not only in basic science (molecular and atomic physics, condensed matter physics, earth science, materials science, chemistry, molecular and cell biology, surface and interface physics, etc.) but also in medicine and in the industry (material investigation, lithography, micro-machining, drug design, etc.).With one third of the world sources, Japan leads the G-8 countries and is also the leader when it comes to “industrial sources”. Japan is not building synchrotron sources solely to support basic research, it is building them because of the diversity, importance, and potential of high-technology, industrial applications of synchrotron radiation. Each source is an investment for the future, opening new research areas and calling for technical innovations.The purpose of this paper is to offer an overview of the Japanese synchrotron radiation sources and their research activities. A special attention will be given to the development of industrial sources, as well as the application of synchrotron radiation to materials science.  相似文献   

20.
Various polymeric blends of hole transporting materials, (such as MEH-PPV and P3HT) and electron transporting materials (such as poly(phenyl-vinyl-quinoline) and poly[2-(4-methacryloxyphenyl)-5-phenyl)-1,3,4-oxadiazole]) have been prepared and investigated. Moreover a soluble, main chain oxadiazole bearing polyether has been synthesized, aiming towards an efficient electron transporting polymeric material which was also used for blend preparation together with P3HT. A deeper investigation into their spectroscopic characteristics using, primarily, FT-IR spectroscopy, but also UV-Vis spectroscopy has been conducted. The surface morphology of these blends was investigated using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) in an attempt to gather information for their solid state properties and morphologies. Finally, DSC measurements provided additional insight into the thermal behaviour of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号