首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption of cadmium onto goethite in the presence of citric acid was measured as a function of pH and cadmium concentration at 25 degrees C. Potentiometric titrations were also performed on the system. Cadmium adsorption onto goethite was enhanced above pH 4 in the presence of 50 microM, 100 microM and 1 mM citric acid. While there was little difference between the enhancements caused by 50 and 100 microM citric acid below pH 6, above pH 6 further enhancement is seen in the presence of 100 microM citric acid. When 1 mM citric acid was present, the enhancement of cadmium adsorption was greater below pH 6, with increased Cd(II) adsorption down to pH 3.5. However, above pH 6, 1 mM of citric acid caused slightly less enhancement than the lower citric acid concentrations. ATR-FTIR spectra of soluble and adsorbed citrate-cadmium species were measured as a function of pH. At pH 4.6 there was very little difference between the ternary Cd(II)-citric acid-goethite spectrum and the binary citric acid-goethite spectrum. However, spectra of the ternary system at pH 7.0 and 8.7 indicated the presence of additional surface species. Further analysis of the spectra suggested that these were metal-ligand outer-sphere complexes. Data from the adsorption experiments and potentiometric titrations of the ternary Cd(II)-citric acid-goethite system were fitted by an extended constant-capacitance surface complexation model. The spectroscopic data were used to inform the choice of surface species. Three reactions in addition to those for the binary Cd(II)-goethite and citric acid-goethite systems were required to describe all of the data. They were [formula in text], [formula in text], and [formula in text]. Neither the spectroscopy nor the modeling suggested the formation of a ternary inner-sphere complex or a surface precipitate under the conditions used in this study.  相似文献   

2.
In this paper the structure and properties of fresh manganese(II)-bentonite was compared with that of an old substance. It was concluded that the oxidation state of Mn changed. This did not cause many changes in the scanning electron microscope (SEM) and in the X-ray diffraction (XRD) studies; caused minor changes in the Mn concentration (determined by XRF) and thermoanalytical and electron spectroscopy analysis (ESCA). The change in the oxidation state of manganese was indicated by the colors of the samples, the difference in the surface sites, titration curves, redox potentials, adsorption, and catalytic activity of the fresh and the old Mn-bentonite. Potentiometric titration data were evaluated by a surface complexation model using the FITEQL3.2 computer program. Stability constants of edge charge reactions and the number of aluminol, silanol, and edge sites were calculated. Potentiometric titration data of commercial and freshly made MnO2 were also evaluated; the calculated constants and site numbers were compared with that of found in literature. Catalytic and adsorption activity of the samples were also investigated. It was found that fresh Mn-bentonite does not adsorb valine, while the old one and MnO2 does. Fresh Mn-bentonite does not catalyze the decomposition of H2O2, while the old one, as well as MnO2 does.  相似文献   

3.
The co-adsorption of Cd(II) and glyphosate (N-(phosphonomethyl)glycine, PMG) at the manganite (gamma-MnOOH) surface has been studied in the pH range 6-10 at 25 degrees C and with 0.1 M Na(Cl) as ionic medium. Batch adsorption experiments, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy were used for the quantitative analysis and the determination of the molecular structure of the surface complexes. The adsorption of Cd(II) and PMG in the ternary Cd(II)-PMG-manganite system was compared with the adsorption in the binary Cd(II)-manganite and PMG-manganite systems. The formation of three inner sphere surface complexes was observed, a ternary Cd(II)-PMG-manganite complex, a binary Cd(II)-manganite complex and a binary PMG-manganite complex. The surface concentration of the ternary complex and the Cd(II)-manganite complex was more or less constant throughout the pH range studied. However, the surface concentration of the binary PMG-manganite complex decreased with increasing pH. The major part of the binary PMG-surface complex was protonated. The ternary surface complex displayed a type B structure (Cd(II)-PMG-manganite). The average Cd-Mn distance obtained from EXAFS (3.26 A) indicates that the binary and ternary Cd(II)-surface complexes are formed by edge-sharing of Mn and Cd octahedra on the (010) plane of the manganite crystals.  相似文献   

4.
Illite samples from Fithian, IL were purified and saturated with Na(+) ions. The acid-base surface chemistry of the Na-saturated illite was studied by potentiometric titration experiments with 0.1, 0.01, and 0.001 M NaNO(3) solutions as the background electrolyte. Results showed that the titration curves obtained at different ionic strengths did not intersect in the studied pH range. The adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto illite was investigated as a function of pH and ionic strength by batch adsorption experiments. Two distinct mechanisms of metal adsorption were found from the experimental results: nonspecific ion-exchange reactions at lower pH values on the basal surfaces and 'frayed edges' and specific adsorption at higher pH values on the mineral edges. Ionic strength had a greater effect on the ion-exchange reactions. The binding constants for the five heavy metals onto illite were determined using the least-square fitting computer program FITEQL. Linear free energy relationships were found between the surface binding constants and the first hydrolysis constants of the metals.  相似文献   

5.
The adsorption of cadmium onto kaolinite and Muloorina illite in the presence of citric acid has been measured as a function of pH and cadmium concentration at 25 degrees C. When citric acid is present in the systems cadmium adsorption is slightly enhanced below pH 5, but significantly suppressed between pH 5 and 8, for both substrates. At higher citric acid concentrations very little cadmium adsorbs onto kaolinite from pH 5 to 8. Above pH 8 adsorption of Cd(II) onto illite is enhanced in the presence of citric acid, especially at lower concentrations, but this does not occur for kaolinite. Adsorption and potentiometric titration data were fitted by simple extended constant-capacitance surface complexation models for the two substrates. Enhancement of adsorption at lower pH values was ascribed to the ternary reaction [X(-)--K(+)](0)+Cd(2+)+L(3-)+2H(+) right arrow over left arrow (0)+K(+) involving outer-sphere complexation with permanently charged X(-) sites on the "silica" faces of both clay minerals. The models suggested that suppression of adsorption in the intermediate pH range was due to the formation of a strong CdL(-) solution complex which adsorbed neither on the permanently charged sites nor on the surface hydroxyl groups at the edges of the clay crystals. At higher pH values the dominant solution complex, CdLOH(2-), apparently adsorbed as an outer-sphere complex at surface hydroxyl groups on illite, SOH+2Cd(2+)+L(3-) right arrow over left arrow [SOCd(+)--CdOHL(2-)](-)+2H(+), but not on kaolinite. This difference in behavior results from the presence of =FeOH groups on the illite surface which can form surface complexes with CdLOH(2-), while the =AlOH groups on the kaolinite surface cannot.  相似文献   

6.
Adsorption of cadmium(II) on humic acid coated titanium dioxide   总被引:1,自引:0,他引:1  
The rapid increase in nanotechnology has led to growing concerns on environmental effects and health risks of nanoparticles (NPs). Many studies investigated the adsorption of toxic pollutants on NPs; however, the interaction between heavy metals and natural organic matter (NOM) coated metal oxide NPs was scarcely studied. In this study, using humic acid (HA) as model NOM, the adsorption of Cd(II) on humic acid coated titanium dioxide (HA-TiO(2)) NPs was investigated. Solution parameters such as pH and salinity were investigated to exploit the mechanisms. Our results demonstrated that the adsorption isotherms of Cd(II) to both TiO(2) and HA-TiO(2) complied well with Freundlich model. q(e) values increased with pH increase, mainly due to electrostatic attraction, whereas q(e) values increased initially and then decreased at 100 mmol L(-1) with salinity increase, mainly due to complexation and electrostatic effects. It is noteworthy that an overall trend of higher Cd(II) adsorption was observed on HA-TiO(2) compared to that on TiO(2), implying that HA coating might modify bioavailability of heavy metals in aquatic environment. The possible adsorption mechanisms in views of electrostatic interactions and covalent effects were interpreted, and the X-ray photoelectron spectroscopy (XPS) results also verified the possible mechanisms.  相似文献   

7.
 The stability constants for the binary M(II)- chlorpromazine hydrochloride (CPZ) and the ternary complexes M(II)-chlorpromazine-amino acid, have been studied using pH-measurements. The amino acids (aa) are: glycine, glutamic acid, histidine and the metal ions are: Cu(II), Zn(II), Co(II), Ni(II) and UO2(II). All experiments were carried out in the presence of 0.1 mol dm−3 KNO3. The resulting stability constants of the binary and the ternary complexes were compared. It was observed that the stability of the ternary complexes-except for glutamic acid – are lower than of the binary ones. Received October 22, 1998. Revision March 14, 1999.  相似文献   

8.
In this study, adsorption behavior and mechanism of Cu(II) onto carbonate-substituted hydroxyapatite (CHAP) in the absence and presence of humic acid (HA) were studied in batch experiments. The results showed that carbonate incorporation in HAP could significantly enhance the adsorption of Cu(II). In ternary systems, the presence of HA led to an increase in Cu(II) adsorption, dependent on HA concentration. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process of Cu(II) onto CHAP and equilibrium data were best described by Sips models. The order of addition sequences of substrates was found to have a noticeable effect on Cu(II) adsorption onto CHAP. The general trend with respect to Cu(II) adsorption being: (CHAP–Cu)–HA?>?(CHAP–HA)–Cu?>?(Cu–HA)–CHAP. The present findings were important for estimating and optimizing the removal of Cu(II) ions by using CHA as a potential adsorbent.  相似文献   

9.
In this work, we study the elimination of three bivalent metal ions (Cd2+, Cu2+, and Pb2+) by adsorption onto natural illitic clay (AM) collected from Marrakech region in Morocco. The characterization of the adsorbent was carried out by X-ray fluorescence, Fourier transform infrared spectroscopy and X-ray diffraction. The influence of physicochemical parameters on the clay adsorption capacity for ions Cd2+, Cu2+, and Pb2+, namely the adsorbent dose, the contact time, the initial pH imposed on the aqueous solution, the initial concentration of the metal solution and the temperature, was studied. The adsorption process is evaluated by different kinetic models such as the pseudo-first-order, pseudo-second-order, and Elovich. The adsorption mechanism was determined by the use of adsorption isotherms such as Langmuir, Freundlich, and Temkin models. Experiments have shown that heavy metals adsorption kinetics onto clay follows the same order, the pseudo-second order. The isotherms of adsorption of metal cations by AM clay are satisfactorily described by the Langmuir model and the maximum adsorption capacities obtained from the natural clay, using the Langmuir isotherm model equation, are 5.25, 13.41, and 15.90 mg/g, respectively for Cd(II), Cu(II), and Pb(II) ions. Adsorption of heavy metals on clay is a spontaneous and endothermic process characterized by a disorder of the medium. The values of ΔH are greater than 40 kJ/mol, which means that the interactions between clay and heavy metals are chemical in nature.  相似文献   

10.

The formation constants of binary and ternary complexes involved in the systems methioninehydroxamic acid (MX), glycylglycine (GG) and Cu(II) or Ni(II) were determined by pH-metric titration in aqueous solution at an ionic strength (I)= 0.15 M NaCl) and T = 25°C. Ternary species of the type (MX : GG : Ni(II) or Cu(II) : H) = (1 : 1 : 1 : r), (2 : 1 : 1 : r) and (1 : 2 : 1 : r) exist in the pH range ~3 to ~10. Differential pulse polarography (DPP) was used to follow complex formation and to study the reduction properties of these metal ions in the presence of MX, and GG. The metal oxidation states were more stabilized in the ternary systems than in the binary systems except for a few Ni(II) systems. Spectral studies in the UV-Vis-nIR were used to monitor the presence of ternary species in the Ni(II) and Cu(II) systems. In addition, EPR studies were also used to record the magnetic properties of the binary and ternary species in the Cu(II) systems.  相似文献   

11.
A range of different stabilizers have been used to render natural kaolin clay particles hydrophobic and dispersible in nonpolar solvents such as heptane. Both silanol and aluminol groups are known to be present at the kaolin surface. Use of a Hammett indicator showed that silanes would not neutralize the acidic aluminol sites, whereas amines would neutralize these sites. Both types of stabilizer adsorbed chemically onto the clay. In addition, a combined silane + amine treatment and a polyisobutylene-based stabilizer with a succinimide/amine head group (SAP230) were also considered. Both would neutralize the acid sites. The final sediment density after settling under gravity was used to gauge suspension stability, which varied with the kaolin surface treatment as silanes < amines < silane + amine < SAP230. This behavior was very similar for suspensions in heptane and in a higher molecular weight branched alkane, polydecene. This trend of increasing stability correlated very well with an increase in surface coverage of the stabilizing moieties, a decrease in particle size found using small-angle light scattering, and a decrease in Bingham yield stress obtained by fitting rheological data.  相似文献   

12.
An acid-activated montmorillonite-illite type of clay collected from the Gulbarga region of Karnataka, India was examined for removing copper and zinc ions from industrial wastewater containing Cu(II), Zn(II) and minor amounts of Pb(II). Langmuir, Freundlich, Brunauer-Emmett-Teller (BET), and competitive Langmuir (two competing ions) isotherms were fitted to experimental data and the goodness of their fit for adsorption was compared. The shapes of isotherms obtained indicated multilayer adsorption of Cu(II) and monolayer adsorption of Zn(II) on the acid-activated clay. Competitive adsorption was found to be significant due to the presence of Cu(II) in the wastewater.  相似文献   

13.
14.
使用改进的RD-1型热导式量热计测量了镍(II), 锌(II),钴(II)-N-(间甲苯基)亚氨基二乙酸-氮三乙酸三元配合物的生成焓, 发现其大小按金属离子来说符合Irving-William序列。利用配体的多环水化结构等讨论了该三元配合物的生成焓和相应的二元配合物的生成焓, 同时求得了上述三元体系的热力学参数, 指出上述三元体系的生成熵是导致这些三元体系具有较大稳定性的根本原因。  相似文献   

15.
Poorly crystalline and well-dispersed hydroxyapatite (HAP) nanoparticles were synthesized and used as novel adsorbents for the removal of Cu(II) from aqueous solution. Various factors affecting the adsorption such as adsorbent crystallinity, pH, adsorbent dosage, contact time, temperature, competing cations, and the presence of humic acid were investigated in detail. Results showed that the HAP calcined at lower temperature was poorly crystalline and had better adsorption capacity for Cu(II) than those calcined at higher temperature. Cu(II) removal was increased with increases of pH, adsorbent dosage, temperature, and the presence of humic acid, but decreased as the existence of competing divalent cations. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Langmuir model, and the estimated maximum adsorption capacity of poorly crystalline HAP was 41.80 mg/g at 313 K, displaying higher efficiency for Cu(II) removal than many previously reported adsorbents. Thermodynamics studied revealed that the adsorption of Cu(II) by poorly crystalline HAP was spontaneous, endothermic, and entropy-increasing in nature. This study showed that poorly crystalline HAP could be used as an efficient adsorbent material for the removal of Cu(II) from aqueous solution.  相似文献   

16.
《中国化学快报》2021,32(10):3231-3236
A magnesium doped ferrihydrite-humic acid coprecipitation (Mg-doped Fh-HA) was synthesized by coprecipitation method. The removal of heavy metals such as Pb(II) and Cd(II) was assessed. The isotherms and kinetic studies indicated that the Mg-doped Fh-HA exhibited a remarkable Pb(II) and Cd(II) sorption capacity (maximum 120.43 mg/g and 27.7 mg/g, respectively.) in aqueous solution. The sorption of Pb(II) and Cd(II) onto best fitted pseudo-second-order kinetic equation and Langmuir model. The adsorption mechanism of Mg-doped Fh-HA on Pb(II) and Cd(II) involves surface adsorption, surface complexation and surface functional groups (such as carboxyl group, hydroxyl group). In addition, ion-exchange and precipitation cannot be ignored. The Mg-doped Fh-HA is a low-cost and high-performance adsorption material and has a wide range of application prospects.  相似文献   

17.
Isotherms of adsorption of Cu(II) and Ni(II) onto solid Azraq humic acid (AZHA) were studied at different pH (2.0-3.7) values and 0.1 M NaClO4 ionic strength. The Langmuir monolayer adsorption capacity was found to range from 0.1 to 1.0 mmol metal ion/g AZHA, where Cu(II) has higher adsorptivity than Ni(II). The previously reported NICA-Donnan parameters for sorption of Cu(II) on HA fit the amount of Cu(bound) determined in the present study at pH 3.7 but underestimates those at pH values of 3.0, 2.4, and 2.0. The contribution of low affinity sites to binding of metal ions increases with decreasing pH and increasing metal ion loading. The aggregation of HA, which is facilitated by decreasing pH and increasing metal loading, may increase the ability of low-affinity sites to encapsulate metal ions. The binding of Ni(II) to HA exhibits less heterogeneity and less multidentism than that of Cu(II). AZHA loaded with Cu(II) and Ni(II) was found to be insoluble in water with no measurable amount of desorbed metal ions.  相似文献   

18.
Adsorption of acidified multiwalled carbon nanotubes (MWCNTs) to heavy metal using Pb(II) as a model was investigated and characterized by many techniques. The main adsorption mechanism of acidified MWCNTs to Pb(II) is proposed on the basis of adequate analysis. The results show that the oxygenous functional groups can be formed on MWCNTs after MWCNTs were treated by concentrated nitric acid. The oxygenous functional groups play an important role in Pb(II) adsorption to form chemical complex adsorption, which accounts for 75.3% of all the Pb(II) adsorption capacity. The Pb(II) in the form of PbO, Pb(OH)(2), and PbCO(3) adsorbed on the surface of the acidified MWCNTs is only 3.4% of the total Pb(II) adsorption capacity. The Pb(II) species adsorbed on acidified MWCNTs mainly aggregate on the ends and at the defects sites on the acidified MWCNTs.  相似文献   

19.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

20.
Selective adsorption of Ni(II) amine complexes used as precursors for supported catalysts was studied on amorphous silica surfaces. The nature of the adsorption sites was probed by [Ni(en)(dien) (H2O)]2+, [Ni(en)2(H2O)2]2+, and [Ni(dien)(H2O)3]2+ (en = ethylenediamine, dien = diethylenetriamine), which respectively contain one, two, and three labile aqua ligands. The silica surface acts as a mono- or polydentate ligand that can substitute the aqua ligands of the Ni(II) complexes in an inner-sphere adsorption mechanism. Room-temperature adsorption isotherms indicate that each nickel complex selects a limited number of adsorption sites; different sites are recognised by the three complexes, even though they have the same charge and comparable sizes. Several spectroscopic techniques (UV/Vis/NIR, EXAFS, and 29Si NMR) were used to confirm the selective character of the interaction of Ni(II) amine complexes with the silica surface. The specific sites include both silanol/silanolate groups in the same number as the original labile ligands and other surface groups that probably act as hydrogen-bond acceptors. These two types of groups cooperate to result in interfacial molecular-recognition phenomena with interactional complementarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号