首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most proteins in blood plasma bind ligands. Human serum albumin (HSA) is the main transport protein with a very high capacity for binding of endogenous and exogenous compounds in plasma. Many pharmacokinetic properties of a drug depend on the level of binding to plasma proteins. This work reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Warfarin, iopanoic acid and digitoxin were chosen as site-specific probes that bind to the main sites of HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II. The advantages of nanoESI-MS for these studies are the sensitivity, the absence of labeled molecules and the short method development time.  相似文献   

2.
A single high‐affinity fatty acid binding site in the important human transport protein serum albumin (HSA) is identified and characterized using an NBD (7‐nitrobenz‐2‐oxa‐1,3‐diazol‐4‐yl)‐C12 fatty acid. This ligand exhibits a 1:1 binding stoichiometry in its HSA complex with high site‐specificity. The complex dissociation constant is determined by titration experiments as well as radioactive equilibrium dialysis. Competition experiments with the known HSA‐binding drugs warfarin and ibuprofen confirm the new binding site to be different from Sudlow‐sites I and II. These binding studies are extended to other albumin binders and fatty acid derivatives. Furthermore an X‐ray crystal structure allows locating the binding site in HSA subdomain IIA. The knowledge about this novel HSA site will be important for drug depot development and for understanding drug‐protein interaction, which are important prerequisites for modulation of drug pharmacokinetics.  相似文献   

3.
The interactions of small molecule drugs with plasma serum albumin are important because of the influence of such interactions on the pharmacokinetics of these therapeutic agents. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) is one such drug candidate that has recently gained attention for its promising clinical applications as an anti-cancer agent. This study sheds light upon key aspects of AICAR’s pharmacokinetics, which are not well understood. We performed in-depth experimental and computational binding analyses of AICAR with human serum albumin (HSA) under simulated biochemical conditions, using ligand-dependent fluorescence sensitivity of HSA. This allowed us to characterize the strength and modes of binding, mechanism of fluorescence quenching, validation of FRET, and intermolecular interactions for the AICAR–HSA complexes. We determined that AICAR and HSA form two stable low-energy complexes, leading to conformational changes and quenching of protein fluorescence. Stern–Volmer analysis of the fluorescence data also revealed a collision-independent static mechanism for fluorescence quenching upon formation of the AICAR–HSA complex. Ligand-competitive displacement experiments, using known site-specific ligands for HSA’s binding sites (I, II, and III) suggest that AICAR is capable of binding to both HSA site I (warfarin binding site, subdomain IIA) and site II (flufenamic acid binding site, subdomain IIIA). Computational molecular docking experiments corroborated these site-competitive experiments, revealing key hydrogen bonding interactions involved in stabilization of both AICAR–HSA complexes, reaffirming that AICAR binds to both site I and site II.  相似文献   

4.
A chiral stationary phase for high-performance liquid chromatography, based upon immobilized human serum albumin (HSA), was used to investigate the effect of octanoic acid on the simultaneous binding of a series of drugs to albumin. Octanoic acid was found to bind with high affinity to a primary binding site, which in turn induced an allosteric change in the region of drug binding Site II, resulting in the displacement of compounds binding there. Approximately 80% of the binding of suprofen and ketoprofen to HSA was accounted for by binding at Site II. Octanoic acid was found to also bind to a secondary site on HSA, with much lower affinity. This secondary site appeared to be the warfarin-azapropazone binding area (drug binding Site I), as both warfarin and phenylbutazone were displaced in a competitive manner by high levels of octanoic acid. The enantioselective binding to HSA exhibited by warfarin, suprofen and ketoprofen was found to be due to differential binding of the enantiomers at Site I; the primary binding site for suprofen and ketoprofen was not enantioselective.  相似文献   

5.
Stereoselective interaction between a chiral nonsteroidal antiinflammatory drug, namely carprofen (CP), and human serum albumin (HSA) was studied, and the results were compared with those obtained with model dyads. In the presence of albumin the same triplet-triplet transition was detected for both CP stereoisomers; however, time-resolved measurements revealed a remarkable stereodifferentiation in the CP/HSA interaction. For each stereoisomer, the decay dynamics evidenced the presence of two components with different lifetimes that can be correlated with complexation of CP to the two possible albumin binding sites (site I and site II). This assignment was confirmed by using ibuprofen, a site II displacer. Thus, the shorter lived components, for which stereodifferentiation was more important (tauR/tauS ca. 4), were ascribed to the CP triplet state in site I; the lifetime shortening can be attributed to electron-transfer quenching by the only tryptophan (Trp) of the protein. Laser flash photolysis of model dyads containing covalently linked CP and Trp revealed formation of the expected Trp radical cation, providing support for such a mechanism. Moreover, significant stereodifferentiation was observed between the (R)- and (S)-CP-Trp dyads. In the case of CP/HSA complexes, as well as in the model compounds, the stereodifferentiation detected in the decays is in good agreement with that observed in the formation of the only CP photoproduct, resulting from a photodehalogenation process. Moreover, stereodifferentiation was also found to occur for the photobinding of CP to the protein.  相似文献   

6.
It is important to characterize drug-albumin binding during drug discovery and lead optimization as strong binding may reduce bioavailability and/or increase the drug's in vivo half-life. Despite knowing about the location of human serum albumin (HSA) drug binding sites and the residues important for binding, less is understood about the binding dynamics between exogenous drugs and endogenous fatty acids. In contrast to highly specific antibody-antigen interactions, the conformational flexibility of albumin allows the protein to adopt multiple conformations of approximately equal energy in order to accommodate a variety of ligands. Nuclear magnetic resonance (NMR) diffusion measurements are a simple way to quantitatively describe ligand-protein interactions without prior knowledge of the number of binding sites or the binding stoichiometry. This method can also provide information about ligand orientation at the binding site due to buildup of exchange-transferred NOE (trNOE) on the diffusion time scale of the experiment. The results of NMR diffusion and NOE experiments reveal multiple binding interactions of HSA with dansylglycine, a drug site II probe, and caprylate, a medium-chain fatty acid that also has primary affinity for HSA's drug site II. Interligand NOE (ilNOE) detected in the diffusion analysis of a protein solution containing both ligands provides insight into the conformations adopted by these ligands while bound in common HSA binding pockets. The results demonstrate the ability of NMR diffusion experiments to identify ternary complex formation and show the potential of this method for characterizing other biologically important ternary structures, such as enzyme-cofactor-inhibitor complexes.  相似文献   

7.
The mechanism of interaction of hypoglycemic drugs, glimepiride and glipizide with human serum albumin (HSA) has been studied using fluorescence spectroscopy. The results are discussed in terms of the binding parameters, thermodynamics of the binding process, nature of forces involved in the interaction, identification of drug binding site on serum albumin and the fluorescence quenching mechanism involved. The association constants were of the order of 105 and glipizide was found to have much higher affinity for HSA than glimepiride at all temperatures. Thermodynamic parameters for the binding suggested that hydrophobic interactions are primarily involved in the binding of these drugs to HSA. However, glimepiride and glipizide appear to cause temperature-dependent conformational changes in the albumin molecule and, therefore, the nature of interaction varied with temperature. Glimepiride and glipizide bind to both site I and site II on HSA, but the primary interaction occurs at site II. The binding region in site II is different for the two drugs. Stern-Volmer analysis of quenching data indicated that tryptophan residues of HSA are not fully accessible to the drugs and a predominantly dynamic quenching mechanism is involved in the binding. Results can provide useful insight into prediction of competitive displacement of these drugs by other co-administered drugs and excipients, resulting in serious fluctuations of the blood glucose levels in diabetic patients.   相似文献   

8.
The understanding of the biotransformations of insulin mimetic vanadium complexes in human blood and its transport to target cells is an essential issue in the development of more effective drugs. We present the study of the interaction of oxovanadium(iv) with human serum albumin (HSA) by electron paramagnetic resonance (EPR), circular dichroism (CD) and visible absorption spectroscopy. Metal competition studies were done using Cu(II) and Zn(II) as metal probes. The results show that V(IV)O occupies two types of binding sites in albumin, which compete not only with each other, but also with hydrolysis of the metal ion. In one of the sites the resulting V(IV)O-HSA complex has a weak visible CD signal and its X-band EPR spectrum may be easily measured. This was assigned to amino acid side chains of the ATCUN site. The other binding site shows stronger signals in the CD in the visible range, but has a hardly measurable EPR signal; it is assigned to the multi metal binding site (MBS) of HSA. Studies with fatted and defatted albumin show the complexity of the system since conformational changes, induced by the binding of fatty acids, decrease the ability of V(IV)O to bind albumin. The possibility and importance of ternary complex formation between V(IV)O, HSA and several drug candidates - maltol (mal), picolinic acid (pic), 2-hydroxypyridine-N-oxide (hpno) and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone (dhp) was also evaluated. In the presence of maltol the CD and EPR spectra significantly change, indicating the formation of ternary VO-HSA-maltol complexes. Modeling studies with amino acids and peptides were used to propose binding modes. Based on quantitative RT EPR measurements and CD data, it was concluded that in the systems with mal, pic, hpno, and dhp (V(IV)OL(2))(n)(HSA) species form, where the maximum value for n is at least 6 (mal, pic). The degree of formation of the ternary species, corresponding to the reaction V(IV)OL(2) + HSA -->/<-- V(IV)OL(2)(HSA) is hpno > pic ≥ mal > dhp. (V(IV)OL)(n)(HSA) type complexes are detected exclusively with pic. Based on the spectroscopic studies we propose that in the (V(IV)OL(2))(n)(HSA) species the protein bounds to vanadium through the histidine side chains.  相似文献   

9.
Abstract— The fluorescent probe Prodan (6-propionyl-2-dimethyl-aminonaphthalene) binds with high affinity to human serum albumin (HSA). The spectral characteristics of the Prodan bound to the protein are very different from the free Prodan in solution. These differences allowed the spectra to be deconvoluted into log-normal bands in order to quantify the bound and unbound ligand and to calculate the binding constant at different temperatures. From such temperature dependence, we found the binding to be exothermic with a van't Hoff enthalpy of -22.8 kJ mol-1. Thermodynamic analysis suggests that the in teraction may be mainly caused by hydrophobic forces and electrostatic interactions. The above analysis of the spectra and the measures of the fluorescence polarization during the successive presence of six specific drugs suggest that the Prodan binding site corresponds with the warfarin binding site on HSA, whereas under the present experimental conditions the other characteristic binding sites of HSA were not affected. Thus, this fluorescent probe provides a rapid and simple means for the characterization of a specific binding site on HSA and also for detecting potential or nonspecific drug-protein interactions.  相似文献   

10.
Warfarin is often used as a site-specific probe for examining the binding of drugs and other solutes to Sudlow site I of human serum albumin (HSA). However, warfarin has strong binding to HSA and the two chiral forms of warfarin have slightly different binding affinities for this protein. Warfarin also undergoes a slow change in structure when present in common buffers used for binding studies. This report examined the use of four related, achiral compounds (i.e., coumarin, 7-hydroxycoumarin, 7-hydroxy-4-methylcoumarin, and 4-hydroxycoumarin) as possible alternative probes for Sudlow site I in drug binding studies. High-performance affinity chromatography and immobilized HSA columns were used to compare and evaluate the binding properties of these probe candidates. Binding for each of the tested probe candidates to HSA was found to give a good fit to a two-site model. The first group of sites had moderate-to-high affinities for the probe candidates with association equilibrium constants that ranged from 6.4 x 10(3)M(-1) (coumarin) to 5.5 x 10(4)M(-1) (4-hydroxycoumarin) at pH 7.4 and 37 degrees C. The second group of weaker, and probably non-specific, binding regions, had association equilibrium constants that ranged from 3.8 x 10(1)M(-1) (7-hydroxy-4-methylcoumarin) to 7.3 x 10(2)M(-1) (coumarin). Competition experiments based on zonal elution indicated that all of these probe candidates competed with warfarin at their high affinity regions. Warfarin also showed competition with coumarin, 7-hydroxycoumarin and 7-hydroxy-4-methycoumarin for their weak affinity sites but appeared to not bind and/or compete for all of the weak sites of 4-hydroxycoumarin. It was found from this group that 4-hydroxycoumarin was the best alternative to warfarin for examining the interactions of drugs at Sudlow site I on HSA. These results also provided information on how the major structural components of warfarin contribute to the binding of this drug at Sudlow site I.  相似文献   

11.
André C  Guillaume YC 《Talanta》2004,63(2):503-508
The zinc cation (Zn2+) binding to human serum albumin (HSA) was studied using a non-equilibrium approach in order to prove two HSA binding sites. The effect of the bulk solvent pH and column temperature T on this binding and the corresponding thermodynamic data were also investigated. It appeared that the association process can be divided into two pH value ranges due to a predominant Zn2+ interaction with either HSA site I or site II. It was also demonstrated that the Zn2+ affinity for the site II was weakly affected by modifying the mobile phase pH whereas for the site I, the affinity constant increased strongly with increasing the pH of the bulk solvent.  相似文献   

12.
A new water-soluble Cu(II) complex containing ranitidine drug and 1,10-phenanthroline was synthesized and characterized by elemental analysis, molar conductivity, spectroscopic and computational methods. In vitro human serum albumin (HSA)-interaction studies of Cu(II) complex were performed by employing fluorescence spectroscopy in combination with UV–vis absorption and circular dichroism (CD) spectroscopies. The results of fluorescence titration showed that Cu(II) complex strongly quenched the intrinsic fluorescence of HSA through a static quenching mechanism with an intrinsic binding constant (6.05 × 104 M?1) at 286 K. The thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures were calculated and suggested that the hydrophobic and hydrogen bonding interactions play major roles in Cu(II) complex-HSA association. The displacement experiments using warfarin and ibuprofen as site I and II probes proved that the Cu(II) complex could bind to site I (subdomain IIA) of HSA. Finally, CD spectra indicated that the interaction of the Cu(II) complex with HSA leads to an increase in the α-helical content. The main result of this study was the finding that the binding affinity of the Cu(II) complex to HSA is three orders of magnitude stronger than that of ranitidine drug.  相似文献   

13.
Abstract

A new water-soluble platinum(II) complex, [Pt(CEX)Cl(DMSO)]Cl (CEX is cephalexin), was synthesized and characterized by physicochemical, spectroscopic, and computational methods. Multispectroscopic techniques were used to investigate the interaction of Pt(II) complex with human serum albumin (HSA) under the physiological conditions. The results of fluorescence titration indicated that the binding of the Pt(II) complex to HSA induced fluorescence quenching through static quenching mechanism with binding constant of 1.24?×?104?M?1 at 298?K. The thermodynamic parameters at different temperatures indicated that van der Waals forces, hydrogen bonds, and electrostatic forces play major roles in the stability of Pt(II) complex–HSA association. The displacement experiments using the site probes warfarin and ibuprofen substantiated that Pt(II) complex could bind to both site I and II of HSA. Furthermore, UV–Vis and fluorescence spectra were used to investigate the conformational changes of HSA molecule with the addition of Pt(II) complex. The binding constant of Pt(II) complex is more than two orders of magnitude higher than the corresponding value of cephalexin. These results indicate that the binding affinity of Pt(II) complex is stronger than the free drug. In addition, the antibacterial study showed that the MIC of platinum complex of cephalexin for variety of organisms was lower than free cephalexin.  相似文献   

14.
Yu X  Zhang J  Wei Y 《色谱》2010,28(7):688-692
利用亲和色谱,在模拟人体生理环境下(37 ℃、pH 7.4),采用竞争置换法研究了丹皮酚(PAE)与固定化人血清白蛋白(HSA)的相互作用。通过对PAE的自我竞争分析及PAE与HSA上结合位点的标记物间的竞争置换分析,得到了PAE和HSA间的结合常数、结合位点数和结合域。结果表明: PAE在HSA分子中仅存在一类结合位点,结合常数为4.84×103 L/mol,该结合位点为HSA上的Sudlow siteII;通过对PAE与HSA相互作用的热力学研究,推断出二者间的作用力类型为氢键或范德华力。  相似文献   

15.
Ding Y  Lin B  Huie CW 《Electrophoresis》2001,22(11):2210-2216
The present work demonstrates that affinity capillary electrophoresis (ACE) can be employed as a valuable and powerful tool for studying the interactions between porphyrins and proteins in biological and biomedical research, such as the development of porphyrins and related compounds as efficient and selective photosensitizers in the photodynamic therapy of cancers. Binding constants of human serum albumin (HSA) to four biological porphyrins (uroporphyrin I, heptacarboxylporphyrin, coproporphyrin I, protoporphyrin IX), which possess a wide range of hydrophobicity, were estimated by ACE. Based on 1:1 molecular association between these individual porphyrins and HSA, the change of the electrophoretic mobility of HSA as a function of porphyrin concentration in the run buffer was measured and the binding constants were calculated from the slope of the Scatchard plots. The binding constant values were found to be 8.80 +/- 0.51 x 10(4) M(-1), 2.39 +/- 0.16 x 10(5) M(-1), 1.61 +/- 0.11 x 10(6) M(-1), and 9.34 +/- 0.30 x 10(6) M(-1) for uroporphyrin I, heptacarboxylporphyrin, coproporphyrin I, and protoporphyrin IX, respectively, and most of these results are in good agreement with those reported in the literature using conventional methods for binding measurements. Additionally, experimental binding constant data obtained using ACE was found to exhibit very good correlation with theoretical hydrophobicity values calculated using the Rekker's hydrophobic fragmental constant method, thus further supporting the hypothesis that the hydrophobicity of the porphyrin side chains play an important role in governing the hydrophobic interaction of porphyrins with serum proteins such as HSA.  相似文献   

16.
用亲和色谱研究了两种中药小分子阿魏酸(FA)、丹皮酚(PAE)在人体生理条件缓冲溶液(pH7.4)条件下与人血清白蛋白(HSA)的相互作用.从药物分子在蛋白质分子上有多种类型相互独立的结合位点的假定出发,应用Langmuir吸附模型和竞争置换分析研究了FA,PAE与HSA的竞争性相互作用.结果表明,FA,PAE与HSA之间存在一类位点,且FA与PAE竞争HSA上的indole位点(siteⅡ).根据热力学参数推测出FA,PAE与HSA之间的作用力主要为氢键作用.从FA,PAE竞争HSA上同一位点的角度,对中医用药中常将含有FA与含有PAE的中药配伍使用,以提高疗效的临床用药现象进行了解释.  相似文献   

17.
A copper(II) complex containing the ceftobiprole drug and 1,10-phenanthroline (phen) has been synthesized and characterized by UV–vis, FT-IR and mass spectra, and elemental analysis. The binding interaction between [Cu(cef)(phen)Cl2] complex and human serum albumin (HSA) was investigated using absorption, fluorescence emission and circular dichroism spectroscopies, and molecular docking. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that the hydrogen bond and van der Waals interactions played main roles in the binding of complex [Cu(cef)(phen)Cl2] to HSA. The results of CD and UV–vis spectroscopy showed that the binding of [Cu(cef)(phen)Cl2] to HSA induces some conformational changes in HSA. Displacement experiments predicted that the binding of [Cu(cef)(phen)Cl2] complex to HSA is located within domain III, Sudlow’s site 2, and these observations were substantiated by molecular docking studies.  相似文献   

18.
The binding of the fluorescent probe acrylodan (AC) to human serum albumin (HSA) was studied by fluorescence spectroscopy. The binding isotherms could be fitted to two types of sites. Competition experiments using iodoacetamide suggested that AC binds tightly on HSA by the cysteine-34. Attempts were made to find the location of the second site using high concentrations of warfarin, phenylbutazone, diazepam, indomethacin, palmitic acid or bilirubin in order to displace the bound AC to the HSA. Bilirubin was the only ligand able to displace the bound AC. This result suggests that AC, which is a very hydrophobic molecule also capable of labeling lysine residues, should also bind the human albumin in the primary site of bilirubin, but with less affinity than to the cysteine-34.  相似文献   

19.
The binding of a lophine-based fluorescence probe, 4-[4-(4-dimethylaminophenyl)-5-phenyl-1H-imidazol-2-yl]benzoic acid methyl ester (DAPIM) with human serum albumin (HSA) was investigated by fluorescence spectroscopy under physiological conditions. While DAPIM shows extreme low fluorescence in aqueous solution, DAPIM binding with HSA emits strong fluorescence at 510 nm. The binding constant and binding number determined by Scatchard plot was 3.65 × 106 M−1 and 1.07, respectively. Competitive binding between DAPIM and other ligands such as warfarin, valproic acid, diazepam and oleic acid, were also studied fluorometrically. The results indicated that the primary binding site of DAPIM to HSA is site II at subdomain IIIA. DAPIM can be a useful fluorescence probe for the characterization of drug-binding sites. In addition to the interaction study, because the fluorescence intensity of DAPIM increased in proportion to HSA concentration, its potential in HSA assay for serum sample was also evaluated.  相似文献   

20.
补骨脂素和异补骨脂素键合人血清白蛋白的比较   总被引:1,自引:0,他引:1  
将互为同分异构体的两种植物药活性组分补骨脂素和异补骨脂素作为研究对象,利用荧光光谱、紫外光谱、圆二色谱及傅立叶变换红外光谱详细比较研究了这两种香豆素类化合物与人血清白蛋白(HSA)的键合作用.不同光谱的结果定性、定量地显示了HSA二级结构变化的程度.依据荧光滴定实验及Van′t Hoff公式求出了反应的热力学参数(ΔH和ΔS)的值.根据修正后的Stern-Volmer和Scatchard方程和荧光光谱数据分别求得不同温度(296,303,310及318 K)下药物与蛋白相互作用的结合常数及结合位点数;且根据F觟rster偶极-偶极能量转移理论,求得药物与HSA间的键合距离;利用竞争实验确定了药物在HSA上的键合位点为site II.从分子水平上揭示了这两种化合物与HSA相互作用的机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号