首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
选择R404A、R23作为超低温血浆速冻箱复叠制冷系统高、低温制冷循环的制冷剂,设计并建造了速冻箱实验系统,研究了速冻箱的性能。实验结果表明,系统高温级制冷循环启动后约0.5h速冻箱内温度下降到-70℃,温度波动度小于0.5℃,高、低温级制冷压缩机的压比分别为10.8和5.6,吸排气压力稳定,说明速冻箱的设计达到了要求。  相似文献   

2.
为研究R12回热循环对航天器单级蒸汽压缩式热泵系统性能的影响,搭建了热泵性能测定实验装置,从排气温度、耗功量、制冷量及制冷系数等方面分析了回热循环对热泵系统性能的影响。结果表明:在有、无回热循环两种工况下,实验测得的排气温度、耗功量、制冷量、制冷系数均随量热器温度的升高而增大;同一量热器温度下,回热循环在提高系统制冷量的同时会增加压缩机耗功,引起排气温度升高,但制冷量的增长幅度大于压缩机耗功的增长幅度。当量热器内温度为16℃、20℃、24℃、28℃时,回热循环带来的制冷系数增长率分别为50%、39.6%、32.7%、27.6%。因此R12回热循环对提高系统制冷系数是有效的。在此基础上,基于Aspen Plus软件建立了实验流程模型,采用NRTL-RK物性方法对有、无回热热泵循环进行模拟计算。模拟结果与实验结果两者间误差较小,说明软件模拟实际热泵流程的可靠性较高,今后可进一步利用Aspen Plus软件作热泵系统性能的深入研究。  相似文献   

3.
基于两级节流、中间完全冷却的R410a双级制冷循环,建立了热力学模型并进行了性能分析。结果表明,随着双级循环中间压力的升高,系统制冷量和耗功均降低,系统COP先升高后降低,系统存在最优中间压力,并且对应最优中间压力存在最优中间温度。与单级循环相比,双级循环的高压级压缩机排气温度低于单级循环的排气温度,约低35.47℃,双级循环系统COP提高了约7.41%。■分析表明,蒸发器■损失最大,约占总■损失的42.78%,其次,冷凝器■损失占32.50%;压缩机■损失最小,约为16.70%,其中,低压级压缩机■损失比高压级压缩机高约28.60%。由双级循环中膨胀机代替节流阀循环的分析得出,膨胀机循环性能COP比节流阀提高了约42.24%,■损失降低约23.74%,膨胀机循环无论在参数优化还是性能改善方面,均比节流阀循环具有一定优势。  相似文献   

4.
对R41/R404A复叠式制冷循环进行理论研究,分别对高低温压缩机的排气温度、压缩机的功耗、系统性能系数COP、系统的效率η、损失X以及系统中各个部件的损失所占的比例随蒸发温度T_e的变化规律进行分析。研究结果表明:R41/R404A复叠制冷系统存在一个最高COP对应的最佳低温循环冷凝温度T_4opt,且T_4opt随着蒸发温度的升高而升高;高低温循环的压缩机排气温度随着蒸发温度T_e的降低而升高,低温级压缩机排气温度升高的幅度远大于高温级压缩机排气温度;压缩机的输入功率随蒸发温度的升高而降低;COP随着蒸发温度的升高而升高,蒸发温度从-60℃升高到-30℃时,COP从1.04增加到1.83;系统损失随着蒸发温度的升高而降低,从蒸发温度-60℃到-30℃,系统损失从5.4k W降到3k W。系统的最佳效率随着蒸发温度的升高,呈现先增加后减小的趋势,在蒸发温度为-36℃时,最佳效率最大值为44.4%;损失主要部件是冷凝蒸发器、高温级的节流机构和高温级压缩机,三个部件的损失之和最大为60.4%,最低为57.6%。蒸发器和冷凝器的不可逆损失最小,其比例不到10%。  相似文献   

5.
对R41/R404A复叠式制冷循环进行理论研究,分别对高低温压缩机的排气温度、压缩机的功耗、系统性能系数COP、系统的效率η、损失X以及系统中各个部件的损失所占的比例随蒸发温度T_e的变化规律进行分析。研究结果表明:R41/R404A复叠制冷系统存在一个最高COP对应的最佳低温循环冷凝温度T_4opt,且T_4opt随着蒸发温度的升高而升高;高低温循环的压缩机排气温度随着蒸发温度T_e的降低而升高,低温级压缩机排气温度升高的幅度远大于高温级压缩机排气温度;压缩机的输入功率随蒸发温度的升高而降低;COP随着蒸发温度的升高而升高,蒸发温度从-60℃升高到-30℃时,COP从1.04增加到1.83;系统损失随着蒸发温度的升高而降低,从蒸发温度-60℃到-30℃,系统损失从5.4k W降到3k W。系统的最佳效率随着蒸发温度的升高,呈现先增加后减小的趋势,在蒸发温度为-36℃时,最佳效率最大值为44.4%;损失主要部件是冷凝蒸发器、高温级的节流机构和高温级压缩机,三个部件的损失之和最大为60.4%,最低为57.6%。蒸发器和冷凝器的不可逆损失最小,其比例不到10%。  相似文献   

6.
两相流引射器回收部分压力能,提高压缩机进气压力,从而减小压缩机的耗功、提高系统的性能。对R134a两相流引射制冷系统进行了实验研究,探讨引射器的结构参数对引射器和整个系统的性能的影响情况。实验结果表明,在蒸发温度/冷凝温度为-10℃/40℃,当喷嘴距为0mm时,引射器的引射比和压力提升比均最大,此时系统耗功最小,制冷量最大,系统的性能最优。在蒸发温度/冷凝温度为-10℃/40℃,引射器的扩张角为8°时,引射器的性能最佳,整个系统的性能最好。  相似文献   

7.
两相流引射器回收部分压力能,提高压缩机进气压力,从而减小压缩机的耗功、提高系统的性能。对R134a两相流引射制冷系统进行了实验研究,探讨引射器的结构参数对引射器和整个系统的性能的影响情况。实验结果表明,在蒸发温度/冷凝温度为-10℃/40℃,当喷嘴距为0mm时,引射器的引射比和压力提升比均最大,此时系统耗功最小,制冷量最大,系统的性能最优。在蒸发温度/冷凝温度为-10℃/40℃,引射器的扩张角为8°时,引射器的性能最佳,整个系统的性能最好。  相似文献   

8.
针对R32空气源热泵系统存在的冬季制热性能下降、排气温度过高等问题,本文对使用闪发器的中间补气空气源热泵系统性能及影响因素进行了实验研究。结果表明,系统相对补气量、制热量及压缩机耗功均随着相对补气压力的升高而增大,排气温度则随着相对补气压力的升高而降低,而制热COP在环境温度高于-5℃时,随相对补气压力升高而减小,在环境温度低于-5℃时,随中间压力升高而呈先增加后减小趋势,系统最佳相对补气压力约为1.2。与传统空气源热泵系统相比,带闪发器的R32中间补气热泵系统的制热量及压缩机耗功均大于传统系统,排气温度则低于传统系统;当环境温度高于-3℃时,传统热泵系统制热COP高于闪发器中间补气系统,而当环境温度低于-3℃时,闪发器中间补气系统制热COP高于传统热泵系统。  相似文献   

9.
对R404A/R23/R14三级复叠制冷系统进行模拟,研究了三级复叠制冷循环中间温度的选取对系统制冷系数的影响,比较了R404A/R23/R14与R404A/R23在重叠温区的制冷系数以及不同制冷剂对三级复叠系统制冷系数的影响。结果表明:R404A/R23/R14复叠式制冷循环存在最佳中间温度,最佳温度下的压缩机压比大致相等;在重叠温区内,R404A/R23的制冷系数高于R404A/R23/R14;R404A/R508B/R14、R404A/R508A/R14更适用于做三级复叠制冷系统的制冷剂。  相似文献   

10.
《低温与超导》2021,49(5):60-63,83
针对一级节流中间完全冷却双级压缩系统,建立了能量方程并编制了程序,对R134a、R410a和R1234yf热泵系统压缩机排气温度、性能COP、压缩机耗功和■损失等进行了对比。结果表明:在环境温度为-25℃时,R1234yf的制热COP可达到1.766,仅比R134a和R410a约低4%和2.9%,低压级压缩机耗功分别比R134a和R410a约低18%和20%;高压级压缩机耗功分别比R134a和R410a约低21%和22%。在一定程度上,R1234yf制冷剂可作为R134a和R410a的替代工质。  相似文献   

11.
针对R32单级压缩空调器排气温度偏高的问题,提出采用双缸滚动转子式压缩机实现两级压缩制冷循环的方案来降低系统的压缩比和排气温度并提高性能系数(CCOP)。建立相应的理论模型,计算了制冷工况和热泵工况下的性能参数。结果表明:采用两级压缩循环方式在制冷工况和热泵工况下使压缩机的排气温度分别降低了30.1℃和28.5℃,CCOP分别提高了3.02%和8.15%;同时分析了中间温度对压缩比、排气温度和系统的CCOP的影响,给出了最佳中间温度的范围。  相似文献   

12.
制定准三级制冷系统用涡旋压缩机的实验方案,对改进后的涡旋压缩机进行测试.实验结果表明:在工况不变的情况下,随高压级压缩机补气压力的增加,压缩机的排气温度明显降低,但压缩机的功率有所增加,但幅度不大,故准三级制冷系统用涡旋压缩机,可以有效增加两级压缩制冷系统的运行稳定性以及压缩机的使用寿命.  相似文献   

13.
以R404A/R23为制冷剂,利用二元单级复叠制冷循环,开发出-86℃大容量低温保存箱。文中对蒸发器优化布置、冷凝蒸发器中间温度确定、毛细管设计以及如何保证设备安全运行等关键问题进行了分析。  相似文献   

14.
谢堃  余克志  王丰兴 《低温与超导》2011,39(4):70-74,82
文中提出了一种采用氨做制冷剂、可用于获得低至-60℃低温的新型制冷系统,为我国低温冷库的建设提供了一条新型环保技术路线.该制冷系统具有两个蒸发温度回路,高温回路的蒸发温度在-35℃~-28℃之间可调,低温回路的蒸发温度在-50℃~-65℃之间可调.两个回路在低压循环桶处汇合.在对该系统进行热力计算的基础上,分析了系统的...  相似文献   

15.
针对现有空气源热泵冷热水机组高温环境运行效果差、效率低、排气温度过高导致停机等问题,设计一套基于准双级压缩循环理论,以R410A为制冷剂的中压补气型空气源热泵冷热水机组。在50℃极端环境温度下,采用中压补气技术,对系统的制冷性能进行实验研究。结果表明:(1)系统出水温度由10℃增至15℃时,制冷量增加77.28%,EER提高59.02%,系统的制冷量、功率和EER均随出水温度的升高而增加;(2)相较不补气模式,系统排气温度由111.9℃降至106.23℃,制冷量由14.14 kW增至16.05 kW,可有效降低排气温度,提升制冷量,能更好提高系统超高温制冷时的稳定性。  相似文献   

16.
R404A和R507A在双级制冷系统中的应用分析   总被引:1,自引:0,他引:1  
对R404A、R507A、R22和R502在一次节流中间不完全冷却双级压缩制冷系统中的运行性能进行模拟,并对结果进行分析比较。结果表明:R404A和R507A的各项性能比较接近,R404A的压缩机耗功比R507A高2.86%;低压压缩机排气温度比R507A高0.58%,高压压缩机排气温度比R507A高2.65%;COP比R507A高0.01;中间温度比R507A低6.14%。  相似文献   

17.
为探究热泵供水温度对CO2空气源热泵系统性能的影响,保持室外环境温度15.5℃不变,调节热泵供水温度,测试冷却水流量、气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力、压缩机耗功量、系统制热量、气冷器热交换完善度、系统COP的变化情况。结果表明:供水温度由45℃升至85℃,气冷器出水温度、压缩机排气温度、气冷器CO2进出口温差、压缩机排气压力随之增加,冷却水流量随之减小。系统制热量增加了7.3%、气冷器热交换完善度下降了20.0%、系统COP下降了35%、压缩机功耗增加了65.1%。  相似文献   

18.
对使用空气动压轴承的升压式空气制冷速冻系统进行了实验研究,分析了压气机进口压力、散热器冷边风量及回热器对系统性能的影响。实验结果表明:增大压气机进口压力和散热器冷边空气流量均可降低涡轮出口温度,提高系统制冷量;系统COP随着压气机进口压力的升高而增大,但是增大幅度逐渐减少;系统增加回热器后,涡轮出口温度最多可降低约67%,系统制冷量和COP最多约可增加45.5%,其中涡轮出口温度最低约可降至-50℃,系统COP最大可达0.7左右。  相似文献   

19.
提出一种新型自复叠制冷循环,通过设置喷射器,利用高压高沸点液态制冷剂引射低压低沸点气态制冷剂,充分回收高沸点组分的节流损失,提高压缩机吸气口处低沸点组分的吸气压力并获取更低制冷温度。建立了组成系统部件热力学数学模型,分析了冷凝温度、混合工质配比和压缩比等参数对传统自复叠制冷循环和新型自复叠制冷循环的工作特性影响。研究表明,新型自复叠制冷循环制冷效率与传统自复叠制冷循环相当,但前者所获得制冷温度比后者所获得制冷温度可降低约10~20℃  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号