首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gauge functionf(·) is a nonnegative convex function that is positively homogeneous and satisfiesf(0)=0. Norms and pseudonorms are specific instances of a gauge function. This paper presents a gauge duality theory for a gauge program, which is the problem of minimizing the value of a gauge functionf(·) over a convex set. The gauge dual program is also a gauge program, unlike the standard Lagrange dual. We present sufficient conditions onf(·) that ensure the existence of optimal solutions to the gauge program and its dual, with no duality gap. These sufficient conditions are relatively weak and are easy to verify, and are independent of any qualifications on the constraints. The theory is applied to a class of convex quadratic programs, and to the minimuml p norm problem. The gauge dual program is shown to provide a smaller duality than the standard dual, in a certain sense discussed in the text.  相似文献   

2.
We consider the following optimization problem: in an abstract setX, find and elementx that minimizes a real functionf subject to the constraintsg(x)0 andh(x)=0, whereg andh are functions fromX into normed vector spaces. Assumptions concerning an overall convex structure for the problem in the image space, the existence of interior points in certain sets, and the normality of the constraints are formulated. A theorem of the alternative is proved for systems of equalities and inequalities, and an intrinsic multiplier rule and a Lagrangian saddle-point theorem (strong duality theorem) are obtained as consequences.  相似文献   

3.
In this paper, using the concept ofA-statistical convergence which is a regular (non-matrix) summability method, we obtain a general Korovkin type approximation theorem which concerns the problem of approximating a functionf by means of a sequenceL n f of positive linear operators.  相似文献   

4.
Abstract Positive solutions to the boundary value problem, y'=-f(x,y(w(x)) 0相似文献   

5.
In this paper we give some new results concerning solvability of the 1-dimensional differential equation y′ = f(x, y) with initial conditions. We study the basic theorem due to Picard. First we prove that the existence and uniqueness result remains true if f is a Lipschitz function with respect to the first argument. In the second part we give a contractive method for the proof of Picard theorem. These considerations allow us to develop two new methods for finding an approximation sequence for the solution. Finally, some applications are given.  相似文献   

6.
Using the fixed point alternative theorem we establish the orthogonal stability of the quadratic functional equation of Pexider type f (x+y)+g(xy) = h(x)+k(y), where f, g, h, k are mappings from a symmetric orthogonality space to a Banach space, by orthogonal additive mappings under a necessary and sufficient condition on f.  相似文献   

7.
It is proved that the complex double Fourier series of an integrable functionf(x, y) with coefficients cjk satisfying certain conditions, will converge in L1-norm. The conditions used here are the combinations of Tauberian condition of Hardy-Karamata kind and its limiting case. This paper extends the result of Bray [1] to complex double Fourier series. An erratum to this article is available at .  相似文献   

8.
It is well known that the Krasnoselskii's fixed point theorem is very very important. It was extensively used for studying the boundary value problems. In this article, the Krasnoselskii's fixed point theorem is extended. The new fixed point theorem is obtained. The second order quasilinear differential equation (Φ (y′))′+a(t)f(t,y,y′)=0,, 0<t<1 subject to mixed boundary condition is studied, where f is a nonnegative continuous function, Φ (v)= |v|p-2 v, p>1. We show the existence of at least one positive solution by using the new fixed point theorem in cone.  相似文献   

9.
We consider the problem of minimizing f(y)dm with y dm=c,c fixed. The functionf is assumed to be continuous, but need not be convex. For this problem, we give necessary and sufficient conditions for the existence of solutions. We also give conditions under which uniqueness in a certain sense holds, and we show a relation which holds between the minimizers of two different problems and the corresponding values of the constraintsc.This research was supported by FINEP-Brazil, Grant Nos. 62.24-0416-00 and 4.2.82.0719-00.  相似文献   

10.
We consider the functional equationf(A(x,y))=B(f(x),f(y)), whereA andB are averages. It is known that such a functional equation has exactly one continuous solution satisfying a given two-point condition. By analogy with the theory of differential equations, we may regard the functional equation, together with a two-point condition, as a boundary value problem. (Then each boundary value problem has a unique continuous solution.) If we replace the two-point condition with the specification of a value and derivative at just one point, we obtain an initial value problem.Consider the initial value problemsf(A(x,y))=B(f(x),f(y)),f(a)=s,f(a)=, obtained by fixinga ands and allowing to vary through the set of positive real numbers. The main result of this paper gives a necessary and sufficient condition for each of the initial value problems to have a unique continuous solution, under the hypothesis that at least one of the problems has a continuous solution. This is a partial answer to the problem of determining conditions which are sufficient for the existence of a unique continuous solution of a given initial value problem.  相似文献   

11.
The subject of this paper is to study the problem of the minimum distance to the complement of a convex set. Nirenberg has stated a duality theorem treating the minimum norm problem for a convex set. We state a duality result which presents some analogy with the Nirenberg theorem, and we apply this result to polyhedral convex sets. First, we assume that the polyhedral set is expressed as the intersection of some finite collection of m given half-spaces. We show that a global solution is determined by solving m convex programs. If the polyhedral set is expressed as the convex hull of a given finite set of extreme points, we show that a global minimum for a polyhedral norm is obtained by solving a finite number of linear programs.  相似文献   

12.
Jianhua Zhou 《代数通讯》2013,41(9):3724-3730
Let L, L′ be Lie algebras over a commutative ring R. A R-linear mapping f: L → L′ is called a triple homomorphism from L to L′ if f([x, [y, z]]) = [f(x), [f(y), f(z)]] for all x, y, z ∈ L. It is clear that homomorphisms, anti-homomorphisms, and sums of homomorphisms and anti-homomorphisms are all triple homomorphisms. We proved that, under certain assumptions, these are all triple homomorphisms.  相似文献   

13.
We will investigate the stability problem of the quadratic equation (1) and extend the results of Borelli and Forti, Czerwik, and Rassias. By applying this result and an improved theorem of the author, we will also prove the stability of the quadratic functional equation of Pexider type,f 1 (x +y) + f2(x -y) =f 3(x) +f 4(y), for a large class of functions.  相似文献   

14.
Solutions are obtained for the boundary value problem, y (n) + f(x,y) = 0, y (i)(0) = y(1) = 0, 0 i n – 2, where f(x,y) is singular at y = 0. An application is made of a fixed point theorem for operators that are decreasing with respect to a cone.  相似文献   

15.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

16.
We obtain via Schauder's fixed point theorem new results for singular second‐order boundary value problems where our non‐linear term f(t,y,z) is allowed to change sign. In particular, our problem may be singular at y=0, t=0 and/or t=1. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
We investigate the existence of positive solutions to the singular fractional boundary value problem: $^c\hspace{-1.0pt}D^{\alpha }u +f(t,u,u^{\prime },^c\hspace{-2.0pt}D^{\mu }u)=0$, u′(0) = 0, u(1) = 0, where 1 < α < 2, 0 < μ < 1, f is a Lq‐Carathéodory function, $q > \frac{1}{\alpha -1}$, and f(t, x, y, z) may be singular at the value 0 of its space variables x, y, z. Here $^c \hspace{-1.0pt}D$ stands for the Caputo fractional derivative. The results are based on combining regularization and sequential techniques with a fixed point theorem on cones.  相似文献   

18.
In nonlinear least-square problems with nonlinear constraints, the function , where f 2 is a nonlinear vector function, is to be minimized subject to the nonlinear constraints f 1(x)=0. This problem is ill-posed if the first-order KKT conditions do not define a locally unique solution. We show that the problem is ill-posed if either the Jacobian of f 1 or the Jacobian of J is rank-deficient (i.e., not of full rank) in a neighborhood of a solution satisfying the first-order KKT conditions. Either of these ill-posed cases makes it impossible to use a standard Gauss–Newton method. Therefore, we formulate a constrained least-norm problem that can be used when either of these ill-posed cases occur. By using the constant-rank theorem, we derive the necessary and sufficient conditions for a local minimum of this minimum-norm problem. The results given here are crucial for deriving methods solving the rank-deficient problem.  相似文献   

19.
In this paper we describe a method for constructing approximate solutions of a two-dimensional inverse eigenvalue problem. Here we consider the problem of recovering a functionq(x, y) from the eigenvalues of — +q(x, y) on a rectangle with Dirichlet boundary conditions. The potentialq(x, y) is assumed to be symmetric with respect to the midlines of the rectangle. Our method is a generalization of an algorithm Hald presented for the construction of symmetric potentials in the one-dimensional inverse Sturm-Liouville problem. Using a projection method, the inverse spectral problem is reduced to an inverse eigenvalue problem for a matrix. We show that if the given eigenvalues are small perturbations of simple eigenvalues ofq=0, then the matrix problem has a solution. This solution is used to construct a functionq which has the same lowest eigenvalues as the unknownq, and several numerical examples are given to illustrate the methods.  相似文献   

20.
A nonlinear programming problem with nondifferentiabilities is considered. The nondifferentiabilities are due to terms of the form min(f 1(x),...,f n(x)), which may enter nonlinearly in the cost and the constraints. Necessary and sufficient conditions are developed. Two algorithms for solving this problem are described, and their convergence is studied. A duality framework for interpretation of the algorithms is also developed.This work was supported in part by the National Science Foundation under Grant No. ENG-74-19332 and Grant No. ECS-79-19396, in part by the U.S. Air Force under Grant AFOSR-78-3633, and in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract N00014-79-C-0424.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号