首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis.During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs.In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.  相似文献   

2.
Nucleic acids play a pivotal role in life processes. The endeavours to shed light on the essential properties of these intriguing building blocks led us to the synthesis of different analogues and the investigation of their properties. First various peptide nucleic acid monomers and oligomers have been synthesized, using an Fmoc/acyl protecting group strategy, and their properties studied. The serendipitous discovery of a side reaction of coupling agents led us to the elaboration of a peptide sequencing method. The capricious behaviour of guanine derivatives spurred the determination of their substitution pattern using 13C, 15N NMR, and mass spectrometric methods. The properties of guanines initiated the logical transition to the study of supramolecular systems composed of purine analogues. Thus, xanthine and uracil derivatives have been obtained and their supramolecular self-assembly properties scrutinized in gas, solid, and liquid states and at solid-liquid interfaces.  相似文献   

3.
核酸探针技术   总被引:1,自引:0,他引:1  
陈勇  李元宗 《分析化学》1995,23(4):474-479
本文对核酸探针技术进行了较全面的综述,介绍了核探针的制备及非放射性标记方法,并对核酸的Southern转印杂交,Northern转印杂交,InSitu转印杂交及斑点杂交法的原理及应用进行了简明的评述。  相似文献   

4.
宋春元  杨琰君  汪联辉 《化学进展》2014,26(9):1516-1526
表面增强拉曼散射(SERS)技术因其具有超灵敏和非破坏性的检测能力,在生命科学领域已经显示出巨大的应用潜力和研究价值。本文综述了SERS技术在核酸检测方面的最新研究进展,重点介绍了基于SERS技术的非标记型、标记型以及其他一些检测方法的原理及研究成果,并讨论了基于SERS的核酸检测技术有待进一步解决的关键问题。  相似文献   

5.
核酸分子嵌入剂   总被引:19,自引:2,他引:19  
求文对核酸分子嵌入剂在核酸的识别、分离及分析中的应用,嵌入剂在特效新药设计及对核酸序列的特异位点裂解方面的新成就进行了评述。讨论了嵌入剂与溶液中DNA及固定于NC膜上的单链DNA的作用机理,引用参考文献32篇。  相似文献   

6.
7.
8.
In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology.  相似文献   

9.
Knots, polyhedra, and Borromean rings with specific structural and topological features can be made from DNA. Biotechnologists have been exploiting the programmability of DNA intermolecular associations for a quarter of a century. These operations have now been applied successfully to branched DNA species to produce complex target structures (for example, the cube shown in the picture) and a nanomechanical device. The assembly of two-dimensional crystals with programmed topographic characteristics demonstrates the simplicity of translating design into surface structures.  相似文献   

10.
Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well‐regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA‐based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.  相似文献   

11.
化学发光核酸传感器的研制   总被引:10,自引:2,他引:8  
用N-乙酰半胱氨酸金表面自组装技术,以及用1-乙基3-(3-二氨基)碳二亚胺盐酸盐(EDC)、N-羟基硫代琥珀酰亚胺(NHS)偶联剂把亲合素固定于金表面,再将生物素标记探针固定在亲合素上,来制备核酸传感器探头。然后将探头与目标DNA和第二生物素标记探 针进行夹心式杂交,再利用生物素-亲合素的作用联入亲合素标记的碱性磷酸酯酶,用酶催化底物AMPPD发光来达到测定DNA的目的。测定也乙型肝炎病毒(HB  相似文献   

12.
The detection of nucleic acids (NAs) within micro total analysis systems (μTASs) for point‐of‐care use is a rapidly developing research area. The efficient isolation of NAs from a raw sample is crucial for these systems to be maximally effective. The use of microfluidics assists in reducing sample sizes and reagent consumption, increases speed, avoids contamination, and enables automation. Through miniaturization into microchips, new techniques have been realized that would be unfavorable and inconvenient to use on a macroscopic scale, but provide an excellent platform for the purification of NAs on a microscopic scale. This Review considers the complexities of NA isolation with miniaturized and microfluidic devices, as well as the considerations when choosing a technique for microfluidic NA isolation, along with their advantages, disadvantages, and potential applications. The techniques presented include using silica‐based surfaces, functionalized paramagnetic beads, oligonucleotide‐modified polymer surfaces, pH‐dependent charged surfaces, Al2O3 membranes, and liquid‐phase isolation. This Review provides a basis to develop the chemistry to improve NA isolation and move it toward achieving 100 % efficiencies.  相似文献   

13.
核酸含量的测定   总被引:7,自引:0,他引:7  
分别用硝酸、高氯酸消化试样与硫酸、过氧化氢水化试样方法对比,采用定磷法测定样品中核酸含量。结果表明,两种试样消化方法不存在显著性差异(P〈0.05)。  相似文献   

14.
15.
光敏感基团作为光化学开关被广泛应用于各种生物过程的光调控中。特别是过去十几年内,核苷酸、寡聚核苷酸和DNA/RNA的光敏修饰策略得到了长足的发展,并在细胞信号传导和靶基因的功能调控等诸多生物学研究中发挥重要的作用。本文主要针对常用的光敏感基团、光敏感核酸及其化学生物学研究进展进行简要综述,并对未来核酸光化学生物学的研究进行了展望。  相似文献   

16.
Nucleic acids and analogues are suitable building blocks for reliable self-assembly of nanometer-sized two- or three-dimensional materials. In order to mimic or approach nature with respect to size and function, Angstrom-scale chemical engineering is emerging as pivotal for future developments. Efforts within nucleic acid nanotechnology will be focussed on generating rigid and stable low nanometer-sized structures carrying functionalities with predictable spatial positioning allowing, by encoded self-assembly, functional nucleic acid architectures to be built towards applications within the biological and material sciences.  相似文献   

17.
Electrochemiluminescence (ECL) is a technique by which a chemiluminescent reaction is generated from reagents produced in the vicinity of an electrode surface when a potential is applied. ECL methods have more significiant advantages over more convential chemiluininescent techniques. In particular, the necessary reactants are produced in situ at a given electrode, enabling the reaction to be controlled through small changes in the applied potential. Furthermore, since light emission is located only in the immediate vicinity of the electrode surface, light colletion is not only efficient but facile.  相似文献   

18.
19.
20.
The stabilities of duplexes formed by strands of novel artificial nucleic acids composed of acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) building blocks were compared with duplexes formed by the acyclic glycol nucleic acid (GNA), peptide nucleic acid (PNA), and native DNA and RNA. All acyclic nucleic acid homoduplexes examined in this study had significantly higher thermal stability than DNA and RNA duplexes. Melting temperatures of homoduplexes were in the order of aTNA>PNA≈GNA≥SNA?RNA>DNA. Thermodynamic analyses revealed that high stabilities of duplexes formed by aTNA and SNA were due to large enthalpy changes upon formation of duplexes compared with DNA and RNA duplexes. The higher stability of the aTNA homoduplex than the SNA duplex was attributed to the less flexible backbone due to the methyl group of D ‐threoninol on aTNA, which induced clockwise winding. Unlike aTNA, the more flexible SNA was able to cross‐hybridize with RNA and DNA. Similarly, the SNA/PNA heteroduplex was more stable than the aTNA/PNA duplex. A 15‐mer SNA/RNA was more stable than an RNA/DNA duplex of the same sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号