首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimental data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.  相似文献   

2.
It has been shown that the magnetic-field-induced transition from a non-Fermi-liquid state to a Fermi liquid state in the Tl2Ba2CuO6 + x high-temperature superconductor is similar to a transition observed in heavy fermion metals. This behavior is explained in the theory of the Fermi condensate quantum-phase transition implying the existence of Landau quasiparticles. The Fermi condensate quantum-phase transition can be considered as a universal cause of the strongly correlated behavior observed in various metals and liquids such as high-temperature superconductors, heavy fermion metals, and two-dimensional Fermi systems.  相似文献   

3.
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.  相似文献   

4.
We demonstrate that in very many natural systems consisting of huge numbers of identical fermions at zero temperature a phase transition can happen that leads to a quite specific state called fermion condensate. As a signal of such fermion condensation quantum phase transition serves unlimited increase of the effective mass of quasi‐particles that determine the excitation spectrum of multi‐fermion system under consideration. We discuss the conditions, under which this transition happens, and illustrate the physical properties of a system that is located near this phase transition. The effective mass diverge when the inter‐particle interaction is repulsive and medium strong as compared to particle's kinetic energy. So, low temperature and intermediate density plasma is a good candidate for such a phenomenon. Therefore, this paper can serve as a source of stimulating ideas when exploring a possible non‐Fermi liquid behavior of plasma. A common and essential feature of such systems is a possibility to introduce quasiparticles that are different, however, from those suggested by L.D. Landau almost sixty years ago, by crucial dependence of temperature, external magnetic field, pressure and so on. These systems exhibit scaling behavior of their effective mass and other characteristics that are determined by this effective mass. It is demonstrated that a huge amount of experimental data on different strongly correlated compounds suggest that they, starting from some temperature and down, are governed by the fermion condensation quantum phase transition. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We consider the behavior of quasiparticles in the superconducting state of high-Tc metals within the framework of the theory of the superconducting state based on the fermion condensation quantum phase transition. We show that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as a Landau-Fermi liquid. These observations are in good agreement with recent experimental facts.  相似文献   

6.
The appearance of the fermion condensation, which can be compared to the Bose-Einstein condensation, in different Fermi liquids is considered; its properties are discussed; and a large amount of experimental evidence in favor of the existence of the fermion condensate (FC) is presented. We show that the appearance of FC is a signature of the fermion condensation quantum phase transition (FCQPT), which separates the regions of normal and strongly correlated liquids. Beyond the FCQPT point, the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other, FC, localized at the Fermi level. In the superconducting state, the quasiparticle dispersion in systems with FC can be represented by two straight lines, characterized by effective masses M FC * and M L * and intersecting near the binding energy E0, which is of the order of the superconducting gap. The same quasiparticle picture and the energy scale E0 persist in the normal state. We demonstrate that fermion systems with FC have features of a “quantum protectorate” and show that strongly correlated systems with FC, which exhibit large deviations from the Landau Fermi liquid behavior, can be driven into the Landau Fermi liquid by applying a small magnetic field B at low temperatures. Thus, the essence of strongly correlated electron liquids can be controlled by weak magnetic fields. A reentrance into the strongly correlated regime is observed if the magnetic field B decreases to zero, while the effective mass M* diverges as \(M^ * \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). The regime is restored at some temperature \(T^ * \propto \sqrt B \). The behavior of Fermi systems that approach FCQPT from the disordered phase is considered. This behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. We expect that FCQPT takes place in trapped Fermi gases and in low-density neutron matter, leading to stabilization of the matter by lowering its ground-state energy. When the system recedes from FCQPT, the effective mass becomes density independent and the system is suited perfectly to be conventional Landau Fermi liquid.  相似文献   

7.
The behavior of the electronic system of heavy-fermion metals is considered. We show that there exist at least two main types of the behavior when the system is near quantum critical point, which can be identified as the fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the behavior of a highly correlated Fermi liquid, while the second type is depicted by the behavior of a strongly correlated Fermi liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a highly correlated Fermi liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures T, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the LFL behavior by the application of magnetic fields B. If the system has undergone FCQPT, it can be considered as a strongly correlated Fermi liquid which demonstrates the NFL behavior even at low temperatures. It can be turned into LFL by applying magnetic fields B. We show that the effective mass M* diverges at the very point that the Neél temperature goes to zero. The B-T phase diagrams of both liquids are studied. We demonstrate that these B-T phase diagrams have a strong impact on the main properties of heavy-fermion metals, such as the magnetoresistance, resistivity, specific heat, magnetization, and volume thermal expansion.  相似文献   

8.
V. A. Khodel 《JETP Letters》2017,105(8):531-536
The diagrammatic technique elaborated by Belyaev for the theory of a Fermi liquid has been implemented to analyze the behavior of Fermi systems beyond the topological phase transition point, where the fermionic condensate appears. It has been shown that the inclusion of the interaction between the condensate and above-condensate particles leads to the emergence of a gap in the single-particle excitation spectrum of these particles even in the absence of Cooper pairing. Hence, the emergence of this gap in homogeneous electron systems of silicon field-effect structures leads to a metal–insulator phase transition rather than to superconductivity. It has been shown that the same interaction explains the nature of the Fermi arc structure in twodimensional electron systems of cuprates.  相似文献   

9.
Orthogonal metal is a new quantum metallic state that conducts electricity but acquires no Fermi surface(FS)or quasiparticles, and hence orthogonal to the established paradigm of Landau's Fermi-liquid(FL). Such a state may hold the key of understanding the perplexing experimental observations of quantum metals that are beyond FL, i.e., dubbed non-Fermi-liquid(nFL), ranging from the Cu-and Fe-based oxides, heavy fermion compounds to the recently discovered twisted graphene heterostructures. However, to fully understand such an exotic state of matter, at least theoretically, one would like to construct a lattice model and to solve it with unbiased quantum many-body machinery. Here we achieve this goal by designing a 2D lattice model comprised of fermionic and bosonic matter fields coupled with dynamic Z_2 gauge fields, and obtain its exact properties with sign-free quantum Monte Carlo simulations. We find that as the bosonic matter fields become disordered, with the help of deconfinement of the Z_2 gauge fields, the system reacts with changing its nature from the conventional normal metal with an FS to an orthogonal metal of n FL without FS and quasiparticles and yet still responds to magnetic probe like an FL. Such a quantum phase transition from a normal metal to an orthogonal metal, with its electronic and magnetic spectral properties revealed, is calling for the establishment of new paradigm of quantum metals and their transition with conventional ones.  相似文献   

10.
We discuss the quantum phase transition that separates a vacuum state with fully gapped fermion spectrum from a vacuum state with topologically protected Fermi points (gap nodes). In the context of condensed-matter physics, such a quantum phase transition with Fermi point splitting may occur for a system of ultracold fermionic atoms in the region of BEC-BCS crossover, provided Cooper pairing occurs in the non-s-wave channel. For elementary particle physics, the splitting of Fermi points may lead to CPT violation, neutrino oscillations, and other phenomena.  相似文献   

11.
12.
We describe the quantum phase transition of a Fermi gas occurring when the quasiparticle excitation energy has a minimum in momentum space which crosses zero on a sphere of radius k(0) not equal 0. The quasiparticles have a universal interaction which controls the physical properties in the vicinity of the quantum-critical point. We discuss possible applications to fermionic superfluids formed by pairing two fermion species, near the point where the densities of the two species become unequal.  相似文献   

13.
The condensation of magnetic quasiparticles into the nonmagnetic ground state has been used to explain novel magnetic ordering phenomena observed in quantum spin systems. We present neutron scattering results across the pressure-induced quantum phase transition and for the novel ordered phase of the magnetic insulator TlCuCl3, which are consistent with the theoretically predicted two degenerate gapless Goldstone modes, similar to the low-energy spin excitations in the field-induced case. These novel experimental findings complete the field-induced Bose-Einstein condensate picture and support the recently proposed field-pressure phase diagram common for quantum spin systems with an energy gap of singlet-triplet nature.  相似文献   

14.
We measured the specific heat and resistivity of heavy fermion CeCoIn5 between the superconducting critical field H(c2)=5 T and 9 T, with the field in the [001] direction, and at temperatures down to 50 mK. At 5 T the data show a non-Fermi liquid (NFL) behavior down to the lowest temperatures. At the field above 8 T the data exhibit a crossover from the Fermi liquid to a non-Fermi liquid behavior. We analyzed the scaling properties of the specific heat and compared both the resistivity and the specific heat with the predictions of a spin-fluctuation theory. Our analysis leads us to suggest that the NFL behavior is due to incipient antiferromagnetism (AFM) in CeCoIn5 with the quantum critical point in the vicinity of H(c2). Below H(c2) the AFM phase which competes with the paramagnetic ground state is superseded by the superconducting transition.  相似文献   

15.
16.
17.
The nesting of the Fermi surfaces of an electron and a hole pocket separated by a vector Q commensurate with the lattice in conjunction with the interaction between the quasiparticles can give rise to a rich phase diagram. Of particular importance is itinerant antiferromagnetic order in the context of pnictides and heavy fermion compounds. By mismatching the nesting the order can gradually be suppressed and as the Néel temperature tends to zero a quantum critical point is obtained. A superconducting dome above the quantum critical point can be induced by the transfer of pairs of electrons between the pockets. The conditions under which such a dome arises are studied. In addition numerous other phases may arise, e.g. charge density waves, non‐Fermi liquid behavior, non‐s‐wave superconductivity, Pomeranchuk instabilities of the Fermi surface, nematic order, and phases with persistent orbital currents.  相似文献   

18.
Low-temperature thermodynamic properties of strongly interacting Fermi liquids with a fermion condensate are investigated. We demonstrate that the spin susceptibility of these systems exhibits the Curie-Weiss law, and the entropy contains a temperature-independent term. The excessive entropy is released at the superconducting transition, enhancing the specific heat jump deltaC and rendering it proportional to the effective Curie constant. The theoretical results are favorably compared with the experimental data on the heavy-fermion metal CeCoIn5, as well as 3He films.  相似文献   

19.
20.
Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the non-Fermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau–Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V. This is because the particle–hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle–hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V. This asymmetry can be observed when a strongly correlated metal is in its normal, superconducting or pseudogap states. We show that the asymmetric part of the dynamic conductance does not depend on temperature provided that the metal is in its superconducting or pseudogap states. In normal state, the asymmetric part diminishes at rising temperatures. Under the application of magnetic field the metal transits to the Landau–Fermi liquid state and the differential tunneling conductivity becomes a symmetric function of V. These findings are in good agreement with recent experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号