首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
采用提拉法生长了白光发光二极管(LED)用Ce,Mn∶YAG单晶,通过X射线衍射(XRD)测试、X射线吸收精细结构(XAFS)测试、吸收光谱和激发发射光谱对其晶相结构、掺杂Mn的价态和光谱特性进行了表征,并研究了晶片厚度及驱动电流的变化对LED器件光电性能的影响.在460 nm蓝光的激发下,Ce,Mn∶YAG单晶的发射光谱可由中心波长526和566 nm的宽带发射峰复合而成.XAFS测试结果表明,所得单晶中掺杂Mn的价态以正二价为主.由于Ce3+和Mn2+在YAG单晶中存在能量传递,荧光光谱中566 nm处的橙色发射峰对应于Mn2+离子4T1→6A1能级的辐射跃迁.  相似文献   

2.
采用预聚法和溶胀法制备了具备光学透明性和可加工性的半导体纳米复合材料ZnS/PMMA. 用透射电镜(TEM)观察了ZnS纳米粒子在聚合物基体中的形貌. 结果表明, 基体中ZnS为六方晶型. 比较了分别以含锌微凝胶(ZnP)和ZnCl2为Zn2+源时,ZnS在基体中的生长情况. 紫外吸收和荧光光谱表明,掺杂了ZnS后的PMMA基体在280 nm处出现了一个新的吸收峰和强的荧光峰.  相似文献   

3.
以溶于十八烯的Se作为Se前驱体,在无膦条件下制备得到了具有较高量子产率的Mn:ZnSe纳米晶.为了进一步提高纳米晶的稳定性和发光强度,运用外延生长的方法进行ZnS壳层包覆并得到了具有核-壳结构的Mn:ZnSe/ZnS纳米晶.X射线衍射、透射电子显微镜及吸收和荧光光谱测试结果表明,该方法合成的Mn:ZnSe纳米晶以及核-壳结构Mn:ZnSe/ZnS纳米晶均为闪锌矿结构,具有良好的单分散性,包覆ZnS外壳层后量子产率可达到60%以上.此外,对ZnS壳层厚度和Mn2+的掺杂量对Mn:ZnSe/ZnS纳米晶发光强度的影响及发光机制也进行了初步讨论.  相似文献   

4.
在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH2)2CS为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS球状颗粒.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析.通过对不同粒径的ZnS纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估.实验结果表明:在表面活性剂CTAB的作用下,随着反应时间的增加,生成的ZnS晶核生长成纳米颗粒,然后ZnS纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm的ZnS纳米球,但制备的ZnS产物的晶体结构均为立方纤锌矿结构.随着ZnS粒径的增加,样品的紫外吸收峰从418nm逐渐蓝移到362nm,而PL发射峰位的峰强随着粒径的增大而增强.光催化结果显示,反应12h制备的ZnS纳米球的光催化性能最佳.  相似文献   

5.
池俊红  王娟 《物理化学学报》2010,26(8):2306-2310
用化学气相沉积(CVD)法制备了Mn掺杂的SnO2一维纳米结构(纳米线及纳米带),X射线衍射(XRD)显示样品为金红石型SnO2晶体,其生长机理可分别归结为气-液-固(VLS)和气-固(VS)机理,生长温度和气态原料浓度的差别是造成样品形貌及生长机理不同的主要原因.样品的拉曼谱出现了500、543、694和720cm-1四个新拉曼谱峰,分别是由活性的红外模和表面模引起的.纳米线及纳米带发光峰位于520nm处,发光强度随样品中氧空位的增减出现由强到弱的变化.  相似文献   

6.
纪元  赵军  董兵辉  付涛 《合成化学》2013,21(1):80-82,85
采用反胶束法制备了SiO2包裹的ZnS∶Mn/ZnS量子点(1)。1的UV吸收峰在295 nm附近,低于体相ZnS(约340 nm);1中Mn2+含量升高,ZnS基质的缺陷荧光发射峰减弱,595 nm处的Mn2+特征荧光发射峰增强;但Mn2+含量过高时产生荧光淬灭。光学显微镜和透射电镜分析表明,1分散性较好,内核呈结晶态;Mn2+含量为2.2%时,1的内核直径和SiO2壳层厚度分别为6 nm和5 nm左右。  相似文献   

7.
在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH2)2CS为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS球状颗粒。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X-射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析。通过对不同粒径的ZnS纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估。实验结果表明:在表面活性剂CTAB的作用下,随着反应时间的增加,生成的ZnS晶核生长成纳米颗粒,然后ZnS纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm的ZnS纳米球,但制备的ZnS产物的晶体结构均为立方纤锌矿结构。随着ZnS粒径的增加,样品的紫外吸收峰从418nm逐渐蓝移到362nm,而PL发射峰位的峰强随着粒径的增大而增强。光催化结果显示,反应12h制备的ZnS纳米球的光催化性能最佳。  相似文献   

8.
利用包括磁控溅射和热氧化的两步法在Si(111)衬底上制备了Sn掺杂ZnO纳米针.首先用磁控溅射法在Si(111)衬底上制备Sn:Zn薄膜,然后在650℃的Ar气氛中对薄膜进行热氧化,制备出Sn掺杂ZnO纳米针.样品的结构、成分和光学性质采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDX)谱和光致发光(PL)光谱等技术手段进行分析.结果表明,制备的样品为具有六方纤锌矿结构的单晶Sn掺杂ZnO纳米针,Sn掺杂量为2.5%(x,原子比),底部和头部直径分别为200-500 nm和40 nm,长度为1-3μm,结晶质量较高.室温光致发光光谱显示紫外发光峰比纯ZnO的发光峰稍有蓝移,这可归因于能谱分析中探测到的Sn的影响.基于本实验的实际条件,简单探讨了Sn掺杂ZnO纳米针的生长机制.  相似文献   

9.
采用水热法合成掺杂过渡金属离子Mn2+和Cr3+的Na Gd F4:Yb3+,Ho3+纳米晶,研究了纳米晶的结构和上转换发光性能。XRD研究结果表明:所有的样品均为六方结构Na Gd F4。合成的纳米晶在980 nm红外光激发下,呈现绿光(520~562 nm),红光(620~675 nm)和红外光(730~760 nm)发射。与未掺杂过渡金属离子的样品相比,掺杂Mn2+离子的Na Gd F4:Yb3+,Ho3+纳米晶上转换发光总效率提高,红光/绿光相对强度增加,红外光/绿光相对强度减弱,掺杂Cr3+离子的Na Gd F4:Yb3+,Ho3+纳米晶发光总效率稍有减弱,红光/绿光和红外光/绿光相对强度增加。主要源于Ho3+→Mn2+→Ho3+和Ho3+→Cr3+→Ho3+的两步能量传递。计算色坐标可得,掺杂Cr3+/Mn2+离子后的Na Gd F4:Yb3+,Ho3+纳米晶的发光由绿光区移向黄光区,微调了纳米晶体的发光颜色。  相似文献   

10.
聚合物为模板制备CdS, ZnS及其掺杂纳米材料   总被引:21,自引:0,他引:21       下载免费PDF全文
以聚苯乙烯-马来酸酐为模板,合成了CdS,CdS︰Mn,ZnS,ZnS︰Mn及ZnS︰Tb纳米微粒.紫外吸收光谱表明所得微粒尺寸均匀,TEM结果显示CdS纳米微粒的尺寸为2.5 nm.从荧光光谱观察到掺杂离子的特征发射峰,证实了基质到掺杂离子的能量传递.通过红外光谱研究了聚合物与金属离子的键合作用,金属离子首先与聚合物的羧基配位,生成硫化物纳米微粒后,聚合物又包覆在纳米微粒的表面形成保护层.  相似文献   

11.
王珊  张粟  李晓东  刘爽  李成宇 《化学通报》2022,85(12):1466-1474
采用高温固相法制备了Mn4+单掺及Mn4+ - Zr4+共掺杂ScTaO4发光材料。利用X射线粉末衍射(XRD)、扫描电镜(SEM)、电子顺磁共振(EPR)以及光致发光光谱(PL)等手段研究了样品的结构、形貌、锰离子价态以及光致发光性质等。详细研究了掺杂Mn离子的价态、Mn离子发光的浓度猝灭和温度猝灭机理。研究发现Mn掺杂的ScTaO4荧光粉在655 nm处有较强的深红色发光,该发射来自Mn4+的2Eg → 4A2g跃迁。当Sc1-xTaO4: xMn4+中Mn4+离子掺杂浓度x为0.005,此时发光强度最大。Mn4+、Zr4+共掺不仅能有效提高Mn4+的发光强度而且可以减小其温度猝灭效应。Zr4+共掺杂造成的发光特性改变,为新型Mn4+掺杂荧光粉的设计和发光性能的调节提供了有价值的参考。  相似文献   

12.
KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)荧光粉的制备与发光性能研究   总被引:1,自引:0,他引:1  
采用高温固相反应法制备了KSrBP2O8:RE(RE=Eu2+,Tb3+,Eu3+)系列荧光粉。利用X射线衍射仪对样品的物相结构进行了分析,结果表明:稀土离子的掺入没有改变荧光粉的主晶相。利用荧光光谱仪对样品的发光性能进行了测试,发现在近紫外光激发下掺杂Eu2+离子的样品具有宽带发射峰,最强发射位于450 nm左右,对应于Eu2+离子的4f65d1→4f7辐射跃迁。随着Eu2+掺杂量的增加,发射光从蓝光逐渐转变到蓝白光。另外,KSrBP2O8:Tb3+和KSrBP2O8:Eu3+能够在近紫外光激发下分别发射出绿光和红光,其最佳掺杂浓度分别为0.04%和0.08%(摩尔分数)。  相似文献   

13.
以L-半胱氨酸(L-Cys)为修饰剂,采用共沉淀法在水溶液中合成了水溶性L-Cys修饰的ZnS:Mn量子点(1),其结构经IR和XRD表征。利用UV和荧光发射光谱研究了1的光学性质,结果表明:1为立方闪锌矿结构;与体相ZnS的吸收相比(340 nm),1的吸收蓝移;1具有独特的荧光性质,ZnS的特征发射峰为390 nm,Mn2+的特征发射峰为581 nm。  相似文献   

14.
采用硫脲做为表面修饰剂,合成了硫脲表面修饰的掺杂Cd2 的ZnS纳米晶(ZnS∶Cd/SC(NH2)2),用X射线粉末衍射、透射电子显微镜、红外光谱以及荧光光谱等手段进行了表征.实验结果表明,Cd2 掺入了ZnS纳米晶中,硫脲分子中的S原子与该纳米晶表面的金属离子存在配位作用,ZnS∶Cd/SC(NH2)2纳米晶为分散性较好、平均粒径7 nm的球形粒子且具有良好的荧光性质.  相似文献   

15.
表面修饰CdS和(CdS)ZnS纳米晶的性能研究   总被引:5,自引:1,他引:5  
在水相中合成了CdS纳米微粒,以ZnS对其进行表面修饰,得到具有核壳结构的(CdS)ZnS水溶性纳米晶。采用红外光谱、X射线衍射(XRD)、透射电镜(TEM)表征其粒度和形貌,紫外-可见吸收光谱(UV)、荧光光谱表征其光学特性。制得的CdS近似呈球形,直径为8nm;CdS纳米颗粒表面经ZnS修饰后,其荧光发射峰强度显著增强,表面态发射减弱。  相似文献   

16.
本文采用水热法制备了稀土离子Yb3+/Tm3+共掺杂的钨酸镉纳米晶。运用X-射线粉末衍射、场发射环境扫描电子显微镜和光谱分析对制备的样品的结构和发光性能进行了表征。根据XRD图谱可知,钨酸镉为单斜晶系,晶粒平均尺寸在28 nm左右。从ESEM图片可明显看出,钨酸镉呈纳米棒结构,直径在30 nm左右,长径比在5~8之间。利用980 nm半导体激光器激发钨酸镉纳米晶得到样品的发射光谱,存在一个较强的蓝光发射,发光峰位于481 nm,对应于Tm3+的1G4→3H6能级的跃迁,分析了Tm3+/Yb3+离子共掺体系的发光机制。讨论了发光强度随稀土离子浓度的变化,当Tm3+离子的掺杂浓度在2mol%,Yb3+/Tm3+物质的量浓度比cTm3+/cYb3+=10时钨酸镉纳米晶的发光强度最强。根据泵浦功率与发光强度之间的关系,可知处于481 nm的蓝光发射属于三光子过程,由发光强度与掺杂浓度之间的双对数衰减曲线可知,引起蓝光发射源于Tm3+的电偶极跃迁。  相似文献   

17.
采用水/CTAB/正丁醇/正辛烷体系微乳液法及水热技术制备了BaLiF3∶Er3+纳米微粒.利用X射线衍射(XRD)、环境扫描电镜(ESEM)和红外荧光光谱等手段对所制备产物进行了表征.X射线衍射数据表明, 所制备微粒与JCPDS 标准卡片18-715吻合很好, 利用谢乐公式计算所制备产物平均粒径在98.45 nm左右, 与环境扫描电镜观察结果基本相同.BaLiF3∶Er3+纳米微粒的红外发射图谱由4个峰构成, 最强峰位于1540 nm处, 属于Er3+的f→f跃迁.  相似文献   

18.
采用微波辅助法合成了蓝-绿色荧光粉Li2CaSiO4∶Eu2+,该荧光粉能很好的与紫外光及蓝光LED匹配。分别采用X射线衍射(XRD)、扫描电镜(SEM)和激发-发射光谱(PLE/PL)对样品进行了表征。X射线衍射数据与标准卡片PDF#27-290很好吻合。扫描电镜测试表明样品粒径在2~5μm。在紫外光和蓝光激发下,Li2CaSiO4∶1%Eu2+发射主峰位于478 nm,对应于Eu2+的t2g→8S7/2电子跃迁,半高峰宽31 nm。样品发光性能与Eu2+掺杂浓度有关,且Eu2+的最佳掺杂浓度为1%。合成的样品色坐标为(0.09,0.24),可作为白光LED用蓝-绿色荧光材料。  相似文献   

19.
采用微波辅助法合成了蓝-绿色荧光粉Li2CaSiO4∶Eu2+,该荧光粉能很好的与紫外光及蓝光LED匹配。分别采用X射线衍射(XRD)、扫描电镜(SEM)和激发-发射光谱(PLE/PL)对样品进行了表征。X射线衍射数据与标准卡片PDF#27-290很好吻合。扫描电镜测试表明样品粒径在2~5μm。在紫外光和蓝光激发下,Li2CaSiO4∶1%Eu2+发射主峰位于478 nm,对应于Eu2+的t2g→8S7/2电子跃迁,半高峰宽31 nm。样品发光性能与Eu2+掺杂浓度有关,且Eu2+的最佳掺杂浓度为1%。合成的样品色坐标为(0.09,0.24),可作为白光LED用蓝-绿色荧光材料。  相似文献   

20.
白光LED用荧光材料Ba3 Gd( BO3 )3:Eu3+的发光性能研究   总被引:1,自引:0,他引:1  
用高温固相反应法制备了稀土离子Eu3+ 掺杂的三元稀土硼酸盐Ba3Gd(BO3)3发光材料, 通过X射线衍射 (XRD) 、荧光光谱和扫描电镜 (SEM) 等测试手段对Ba3Gd(BO3)3:Eu3+ 荧光粉的制备条件、发光性能以及形貌进行了研究. XRD结果表明, 在1000 ℃时可得到Ba3Gd(BO3)3 纯相. 扫描电镜照片显示颗粒基本为球形, 粒径约为200~400 nm. 发光光谱测试表明, Ba3Gd(BO3)3:Eu3+荧光粉在近紫外区(UV) (396 nm)和蓝光区(466 nm)可以被有效地激发, 分别用255和396 nm的紫外光激发样品时, 以Eu3+ 的 5D0-7F2 (611和616 nm) 超灵敏跃迁为主要发射峰. 当Eu3+的掺杂浓度为10%(摩尔分数)时, Ba3Gd(BO3)3:Eu3+ 在611和616 nm处的发光强度最大. 因此, 这种荧光粉是一种可能应用在白光LED上的红色荧光材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号