首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in or on various cell types and have diverse functions. In immune cells nAChRs regulate proliferation, differentiation and cytokine release. Specifically, activation of the α7 nAChR reduces inflammation as part of the cholinergic anti-inflammatory pathway. Here we review numerous effects of α7 nAChR activation on immune cell function and differentiation. Further, we also describe evidence implicating this receptor and its chaperone RIC-3 in diseases of the central nervous system and in neuroinflammation, focusing on multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Deregulated neuroinflammation due to dysfunction of α7 nAChR provides one explanation for involvement of this receptor and of RIC-3 in neurodegenerative diseases. In this review, we also provide evidence implicating α7 nAChRs and RIC-3 in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) involving neuroinflammation. Besides, we will describe the therapeutic implications of activating the cholinergic anti-inflammatory pathway for diseases involving neuroinflammation.  相似文献   

2.
In the recent research, we investigated the application of gold nanoparticles green-synthesized by Alhagi maurorum aqueous extract in the treatment of several types of leukemia, i.e. acute T cell leukemia, acute lymphoblastic leukemia, and acute myeloid leukemia. Different techniques such as transmission electron microscopy (TEM), fourier-transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy analysis were used to characterize AuNPs. The TEM images show a spherical morphology for AuNPs with the range size of 21 to 59 for the synthetic nanoparticles. In the antioxidant test, the IC50 of AuNPs and butylated hydroxytoluene (BHT) against DPPH free radicals were 117 and 87 µg/mL, respectively. In the oncological part of the recent study, the treated cells with AuNPs and Cytarabine were assessed by MTT assay for 48 h about the cytotoxicity and anti-leukemia properties on normal (HUVEC) and leukemia cell lines i.e., acute myeloid leukemia (Human HL-60/vcr and 32D-FLT3-ITD), acute lymphoblastic leukemia (MOLT-3 and TALL-104), and acute T cell leukemia (J.RT3-T3.5 and Jurkat, Clone E6-1). The IC50 of AuNPs were 242, 297, 383, 207, 234, and 218 µg/mL against acute myeloid leukemia (Human HL-60/vcr and 32D-FLT3-ITD), acute lymphoblastic leukemia (MOLT-3 and TALL-104), and acute T cell leukemia (J.RT3-T3.5 and Jurkat, Clone E6-1) cell lines, respectively. In addition, the IC50 of Cytarabine were 117, 113, 145, 119, 131, and 135 µg/mL against acute myeloid leukemia (Human HL-60/vcr and 32D-FLT3-ITD), acute lymphoblastic leukemia (MOLT-3 and TALL-104), and acute T cell leukemia (J.RT3-T3.5 and Jurkat, Clone E6-1) cell lines, respectively. The viability of malignant leukemia cell line reduced dose-dependently in the presence of AuNPs and Cytarabine.  相似文献   

3.
Acute myeloid leukemia (AML), which is the most common acute adult leukemia and the second most common pediatric leukemia, still has a poor prognosis. Human C‐type lectin‐like molecule‐1 (CLL1) is a recently identified myeloid lineage restricted cell surface marker, which is overexpressed in over 90 % of AML patient myeloid blasts and in leukemic stem cells. Here, we describe the synthesis of a novel bispecific antibody, αCLL1‐αCD3, using the genetically encoded unnatural amino acid, p‐acetylphenylalanine. The resulting αCLL1‐αCD3 recruits cytotoxic T cells to CLL1 positive cells, and demonstrates potent and selective cytotoxicity against several human AML cell lines and primary AML patient derived cells in vitro. Moreover, αCLL1‐αCD3 treatment completely eliminates established tumors in an U937 AML cell line xenograft model. These results validate the clinical potential of CLL1 as an AML‐specific antigen for the generation of a novel immunotherapeutic for AML.  相似文献   

4.
Exosomes hold great potential in therapeutic development. However, native exosomes usually induce insufficient effects in vivo and simply act as drug delivery vehicles. Herein, we synthesize responsive exosome nano-bioconjugates for cancer therapy. Azide-modified exosomes derived from M1 macrophages are conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRPα (aCD47 and aSIRPα) through pH-sensitive linkers. After systemic administration, the nano-bioconjugates can actively target tumors through the specific recognition between aCD47 and CD47 on the tumor cell surface. In the acidic tumor microenvironment, the benzoic-imine bonds of the nano-bioconjugates are cleaved to release aSIRPα and aCD47 that can, respectively, block SIRPα on macrophages and CD47, leading to abolished “don't eat me” signaling and improved phagocytosis of macrophages. Meanwhile, the native M1 exosomes effectively reprogram the macrophages from pro-tumoral M2 to anti-tumoral M1.  相似文献   

5.
Recently, the development of carbon nanocomposites composed of carbon nanotubes and metal nanoparticles has attracted many interests because of their large potential for technological applications such as catalysts, sensors, biomedicine, and disinfection. In the present study, we described a simple chemistry method to synthesize multi-walled carbon nanotubes (MWCNTs) decorated with silver nanoparticles (Ag-NPs). Also, we investigated the antioxidant and anti-acute leukemia activities against acute myeloid leukemia and acute T cell leukemia cell lines. Ag NPs-MWCNTs were characterized and analyzed using common nanotechnology techniques including transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM) and elemental mapping analysis. Also, 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was performed to assess the antioxidant capacities of AgNO3, MWCNTs, and Ag NPs-MWCNTs. It revealed similar antioxidant potentials for Ag NPs-MWCNTs and butylated hydroxytoluene. In MTT assay, Ag NPs-MWCNTs had very low cell viability (very high anti-acute leukemia properties) dose-dependently against 32D-FLT3-ITD (Acute myeloid leukemia cell line), Human HL-60/vcr (Acute myeloid leukemia cell line), Jurkat, Clone E6–1 (Acute T cell leukemia cell line), and J.RT3-T3.5 (Acute T cell leukemia cell line) without any cytotoxicity on human umbilical vein endothelial cell line (HUVEC; Normal cell line). In conclusion, the synthesized Ag NPs-MWCNTs revealed excellent antioxidant and cytotoxicity activities against acute myeloid leukemia and acute T cell leukemia cell lines in a dose depended manner. After confirming in the in vivo and clinical trials, these nanoparticles can be administrated in humans for the treatment of acute leukemia especially acute myeloid leukemia and acute T cell leukemia.  相似文献   

6.
Exosomes hold great potential in therapeutic development. However, native exosomes usually induce insufficient effects in vivo and simply act as drug delivery vehicles. Herein, we synthesize responsive exosome nano‐bioconjugates for cancer therapy. Azide‐modified exosomes derived from M1 macrophages are conjugated with dibenzocyclooctyne‐modified antibodies of CD47 and SIRPα (aCD47 and aSIRPα) through pH‐sensitive linkers. After systemic administration, the nano‐bioconjugates can actively target tumors through the specific recognition between aCD47 and CD47 on the tumor cell surface. In the acidic tumor microenvironment, the benzoic‐imine bonds of the nano‐bioconjugates are cleaved to release aSIRPα and aCD47 that can, respectively, block SIRPα on macrophages and CD47, leading to abolished “don't eat me” signaling and improved phagocytosis of macrophages. Meanwhile, the native M1 exosomes effectively reprogram the macrophages from pro‐tumoral M2 to anti‐tumoral M1.  相似文献   

7.
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS), Parkinson’s disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.Subject terms: Neuroimmunology, Neuroimmunology  相似文献   

8.
Background: Carnosine is a dipeptide molecule (β-alanyl-l-histidine) with anti-inflammatory, antioxidant, anti-glycation, and chelating properties. It is used in exercise physiology as a food supplement to increase performance; however, in vitro evidence suggests that carnosine may exhibit anti-cancer properties. Methods: In this study, we investigated the effect of carnosine on breast, ovarian, colon, and leukemic cancer cell proliferation. We further examined U937 promonocytic, human myeloid leukemia cell phenotype, gene expression, and cytokine secretion to determine if these are linked to carnosine’s anti-proliferative properties. Results: Carnosine (1) inhibits breast, ovarian, colon, and leukemic cancer cell proliferation; (2) upregulates expression of pro-inflammatory molecules; (3) modulates cytokine secretion; and (4) alters U937 differentiation and phenotype. Conclusion: These effects may have implications for a role for carnosine in anti-cancer therapy.  相似文献   

9.
Advanced glycation end products (AGEs) are potentially harmful and heterogeneous molecules derived from nonenzymatic glycation. The pathological implications of AGEs are ascribed to their ability to promote oxidative stress, inflammation, and apoptosis. Recent studies in basic and translational research have revealed the contributing roles of AGEs in the development and progression of various aging-related pathological conditions, such as diabetes, cardiovascular complications, gut microbiome-associated illnesses, liver or neurodegenerative diseases, and cancer. Excessive chronic and/or acute binge consumption of alcohol (ethanol), a widely consumed addictive substance, is known to cause more than 200 diseases, including alcohol use disorder (addiction), alcoholic liver disease, and brain damage. However, despite the considerable amount of research in this area, the underlying molecular mechanisms by which alcohol abuse causes cellular toxicity and organ damage remain to be further characterized. In this review, we first briefly describe the properties of AGEs: their formation, accumulation, and receptor interactions. We then focus on the causative functions of AGEs that impact various aging-related diseases. We also highlight the biological connection of AGE–alcohol–adduct formations to alcohol-mediated tissue injury. Finally, we describe the potential translational research opportunities for treatment of various AGE- and/or alcohol-related adduct-associated disorders according to the mechanistic insights presented.Subject terms: Medical research, Experimental models of disease  相似文献   

10.
LR11, also known as SorLA or SORL1, is a type-I membrane protein from which a large extracellular part, soluble LR11 (sLR11), is released by proteolytic shedding on cleavage with a disintegrin and metalloproteinase 17 (ADAM17). A shedding mechanism is presumed to have a key role in the functions of LR11, but the evidence for this has not yet been demonstrated. Tetraspanin CD9 has been recently shown to regulate the ADAM17-mediated shedding of tumor necrosis factor-α and intercellular adhesion molecule-1 on the cell surface. Here, we investigated the role of CD9 on the shedding of LR11 in leukocytes. LR11 was not expressed in THP-1 monocytes, but it was expressed and released in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 macrophages (PMA/THP-1). Confocal microscopy showed colocalization of LR11 and CD9 proteins on the cell surface of PMA/THP-1. Ectopic neo-expression of CD9 in CCRF-SB cells, which are LR11-positive and CD9-negative, reduced the amount of sLR11 released from the cells. In contrast, incubation of LR11-transfected THP-1 cells with neutralizing anti-CD9 monoclonal antibodies increased the amount of sLR11 released from the cells. Likewise, the PMA-stimulated release of sLR11 increased in THP-1 cells transfected with CD9-targeted shRNAs, which was negated by treatment with the metalloproteinase inhibitor GM6001. These results suggest that the tetraspanin CD9 modulates the ADAM17-mediated shedding of LR11 in various leukemia cell lines and that the association between LR11 and CD9 on the cell surface has an important role in the ADAM17-mediated shedding mechanism.  相似文献   

11.
Astrocytes greatly participate to inflammatory and neurotoxic reactions occurring in neurodegenerative diseases and are valuable pharmacological targets to support neuroprotection. Here we used human astrocytes generated from reprogrammed fibroblasts as a cellular model to study the effect of the compound Laquinimod and its active metabolite de-Laquinimod on astrocyte functions and the astrocyte–neuron interaction. We show that human iAstrocytes expressed the receptor for the inflammatory mediator IL1 and responded to it via nuclear translocation of NFκB, an event that did not occur if cells were treated with Laquinimod, indicating a direct anti-inflammatory activity of the drug on the human astrocyte. Similarly, while exposure to IL1 downregulated glial glutamate transporters GLAST and GLT1, treatment with Laquinimod supported maintenance of physiological levels of these proteins despite the inflammatory milieu. Laquinimod also induced nuclear translocation of the aryl hydrocarbon receptor (AHR), suggesting that drug action was mediated by activation of the AHR pathway. However, the drug was effective despite AHR inhibition via CH223191, indicating that AHR signaling in the astrocyte is dispensable for drug responses. Finally, in vitro experiments with rat spinal neurons showed that laquinimod did not exert neuroprotection directly on the neuron but dampened astrocyte-induced neurodegeneration. Our findings indicate that fibroblast-derived human astrocytes represent a suitable model to study astrocyte–neuron crosstalk and demonstrate indirect, partial neuroprotective efficacy for laquinimod.  相似文献   

12.
Recently, metallic nanoparticles have been used for the treatment of several disorders, such as cancer. Indeed, finding the chemotherapeutic drug of nanoparticles is in researching the priority of both developed and developing countries. The present study confirms the ability of aqueous extract of Thymus vulgaris grown under in vitro condition for the biosynthesis of gold nanoparticles (AuNPs). Also, in this study, we indicated the antioxidant, cytotoxicity, and anti-acute myeloid leukemia properties of AuNPs compared to doxorubicin in a leukemic mouse model. The synthesized AuNPs were characterized using different techniques including X-ray diffraction (XRD), energy Dispersive X-ray Spectrometry (EDS), fourier-transform infrared spectroscopy (FT-IR) spectroscopy, ultraviolet–visible spectroscopy (UV–Vis.), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). In vivo design, induction of acute myeloid leukemia was done by 7,12-Dimethylbenz[a]anthracene (DMBA) in 75 mice. Then, the animals were randomly divided into six subgroups, including control, untreated, doxorubicin, AuNPs, T. vulgaris, and HAuCl4. By quantitative real-time PCR, sphingosine-1-phosphate receptor-1 and sphingosine-1-phosphate receptor-5 mRNA expression in lymphocytes were significantly (P ≤ 0.01) raised by treating the leukemic mice with the AuNPs and doxorubicin. Also, AuNPs similar to doxorubicin, significantly (P ≤ 0.01) enhanced the anti-inflammatory cytokines (IL4, IL5, IL10, IL13, and IFNα) and the platelet, lymphocyte, and red blood cell (RBC) parameters and reduced the pro-inflammatory cytokines (IL1, IL6, IL12, IL18, IFNY, and TNFα), and the total white blood cell (WBC), blast, monocyte, neutrophil, eosinophil, and basophil counts as compared to the untreated mice. In vitro design, 2,2-diphenyl-1-picrylhydrazyl (DPPH) test revealed similar antioxidant potentials for doxorubicin and AuNPs. Furthermore, AuNPs similar to doxorubicin had low cell viability dose-dependently against 32D-FLT3-ITD, Human HL-60/vcr, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. Above results confirm the excellent antioxidant, cytotoxicity, and anti-acute myeloid leukemia effects of AuNPs compared to doxorubicin. After confirming these results in clinical trial studies, AuNPs can be used as a chemotherapeutic drug for the treatment of acute myeloid leukemia in human.  相似文献   

13.
Recent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1). Currently, several research groups are investigating the pharmacological effects of T1AM systemic administration in the search of novel therapeutic approaches for the treatment of interlinked pathologies, such as metabolic and neurodegenerative diseases (NDDs). A critical aspect in the development of new drugs for NDDs is to know their distribution in the brain, which is fundamentally related to their ability to cross the blood–brain barrier (BBB). To this end, in the present study we used the immortalized mouse brain endothelial cell line bEnd.3 to develop an in vitro model of BBB and evaluate T1AM and TA1 permeability. Both drugs, administered at 1 µM dose, were assayed by high-performance liquid chromatography coupled to mass spectrometry. Our results indicate that T1AM is able to efficiently cross the BBB, whereas TA1 is almost completely devoid of this property.  相似文献   

14.
Several myeloid leukemia-derived cells have been reported to possess the ability to differentiate into dendritic cells (DC). MUTZ-3, a myeloid leukemia cell line, responds to GM-CSF, IL-4 and TNF-alpha, and acquires a phenotype similar to immature monocyte-derived DC (MoDC). In the present study, MUTZ-3-derived DC (MuDC) showed high level expression of HLA class II molecules, CD80 and CD86, and were able to function as potent antigen presenting cells as previously reported. Interestingly, MuDC maturation was induced by CD40- mediated stimulation, but not by LPS stimulation. We analyzed CCR1, CCR7 and Toll-like receptor (TLR) expressions in MuDC, and measured IL-10 and IL-12 production after maturation stimuli. Although MuDC expressed the mRNA for TLR4, a major component of the LPS receptor system, they did not show an enhanced level of CCR7 or cytokine production after LPS stimulation. In contrast, they responded to CD40 stimulation, which resulted in increased levels of CD83, CD86 and CCR7. Moreover, while LPS- stimulated MoDC could potently stimulate NK cells in a DC-NK cell co-culture, LPS-stimulated MuDC failed to stimulate primary NK cells. Taken together, our findings suggest that, although MuDC express TLR4, unlike TNF-alpha and IL-1beta, LPS does not stimulate MuDC to acquire mature phenotypes, and they may have impaired activity to initiate innate immune response.  相似文献   

15.
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called “spice of life”, in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer’s Diseases, Parkinson’s Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders.  相似文献   

16.
The use of biologically active compounds has become a realistic option for the treatment of malignant tumors due to their cost-effectiveness and safety. In this review, we aimed to highlight the main natural biocompounds that target leukemic cells, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their therapeutic potential in the treatment of leukemia: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). It provides a basis for researchers and hematologists in improving basic and clinical research on the development of new alternative therapies in the fight against leukemia, a harmful hematological cancer and the leading cause of death among patients.  相似文献   

17.
The aggregation of proteins into amyloid fibers is linked to more than forty still incurable cellular and neurodegenerative diseases such as Parkinson’s disease (PD), multiple system atrophy, Alzheimer’s disease and type 2 diabetes, among others. The process of amyloid formation is a main feature of cell degeneration and disease pathogenesis. Despite being methodologically challenging, a complete understanding of the molecular mechanism of aggregation, especially in the early stages, is essential to find new biological targets for innovative therapies. Here, we reviewed selected examples on α-syn showing how complementary approaches, which employ different biophysical techniques and models, can better deal with a comprehensive study of amyloid aggregation. In addition to the monomer aggregation and conformational transition hypothesis, we reported new emerging theories regarding the self-aggregation of α-syn, such as the alpha-helix rich tetramer hypothesis, whose destabilization induce monomer aggregation; and the liquid-liquid phase separation hypothesis, which considers a phase separation of α-syn into liquid droplets as a primary event towards the evolution to aggregates. The final aim of this review is to show how multimodal methodologies provide a complete portrait of α-syn oligomerization and can be successfully extended to other protein aggregation diseases.  相似文献   

18.
We proposed to perform a comparative analysis of growth factors, cytokines, and chemokine receptors on the salivary cells in the saliva obtained from trigeminal neuralgia (TN) and normal subjects. Saliva was collected from TN and healthy subjects. Salivary cells were isolated by centrifugation. The expression of the cell surface marker was analyzed by flow cytometry. A cytometric bead array was done to measure the levels of cytokines and growth factors on the flow cytometer. Saliva from TN subjects showed lower growth factor levels of Angiopoietin-2, bFGF, HGF, SCF, TGF-α, and VEGF and higher cytokine levels of IL-1β, TNF-α, CCL2, IL-17A, IL-6, and CXCL8, as well as higher expression levels of chemokine receptors CCR1 (CD191), CR3 (CD11b), CCR2 (CD192), CXCR5 (CD185), and CCR5 (CD196) in the cells from TN saliva. A certain set of cytokines and growth factors in the saliva, as well as chemokine receptors on salivary cells, could be a useful tool in the diagnostics and prognostics of trigeminal neuralgia. Trigeminal neuralgia is one of the significant pathological conditions in the class of chronic diseases around the world. Many targeted approaches are being tried by various research groups to utilize the information of the inflammatory microenvironment to resolve the pathology of chronic TN.  相似文献   

19.
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture.  相似文献   

20.
The present research confirms the capacity of aqueous extract of Boswellia serrata grown under in vitro condition for the green synthesis of gold nanoparticles (AuNPs). Also, we showed the cytotoxicity, antioxidant, and anti-acute myeloid leukemia properties of AuNPs compared to mitoxantrone in a leukemic mouse model. The synthesized AuNPs were characterized using several techniques including XRD, TEM, FE-SEM, UV–Vis, and FT-IR. From the XRD pattern, four distinct diffraction peaks at 38.2°, 44.2°, 64.7° and 77.4° are indexed as (111), (200), (220) and (311) planes of FCC metallic gold. TEM and FE-SEM images revealed an average diameters of 15–30 nm for the nanoparticles. FT-IR findings offered antioxidant compounds in the nanoparticles were the sources of reducing power, reducing gold ions to AuNPs. UV–Vis revealed an absorption band at 536 nm that is related to the surface plasmon resonance of AuNPs. In vivo design, induction of acute myeloid leukemia was done by DMBA in 75 mice. Then, the mice were randomly divided into six subgroups, including untreated, control, HAuCl4, B. serrata, AuNPs, and mitoxantrone. AuNPs (In the dose of 1 mg/kg body weight) similar to mitoxantrone, significantly (p ≤ 0.05) increased the platelet, lymphocyte, and RBC parameters and the anti-inflammatory cytokines (IL4, IL5, IL10, IL13, and IFNα) and reduced the weights and volumes of liver and spleen and their sub-compartment, the total WBC, blast, monocyte, neutrophil, eosinophil, and basophil counts, and the pro-inflammatory cytokines (IL1, IL6, IL12, IL18, IFNY, and TNFα) as compared to the untreated mice. By quantitative Real-Time PCR, S1PR1 and S1PR5 mRNA expression in lymphocytes were significantly (p ≤ 0.05) increased by treating the leukemic mice with the AuNPs and mitoxantrone. In vitro design, AuNPs similar to mitoxantrone had low cell viability dose-dependently against Human HL-60/vcr, 32D-FLT3-ITD, and Murine C1498 cell lines without any cytotoxicity on HUVEC cell line. Besides, the DPPH assay showed similar antioxidant potentials for AuNPs and mitoxantrone. In conclusion, the results of this research indicated the excellent capacity of synthesized gold nanoparticles using B. serrata leaf aqueous extract in the treatment of acute myeloid leukemia in leukemic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号