首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 453 毫秒
1.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33REx(x=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14 Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333 K时放电容量可达550.4 mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

2.
本文研究了稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd,Gd;x=0.01)合金均有V基固溶体相和C14型Laves相两相组成。合金中两相的晶格参数随加入稀土元素的不同而发生变化。稀土元素部分取代可改善合金电极的活化性能。然而,对合金电极的其他性能影响因元素种类不同而各异。Ce取代增大了合金电极的最大放电容量,Nd元素可以有效改善合金的高倍率放电性能。工作温度对合金电极的放电容量影响较大,Nd和Gd在333 K最大放电容量可达426和465 mAh.g-1。过高的温度使其循环容量衰减加剧。  相似文献   

3.
添加元素对AB2型Laves相合金电化学性能的影响   总被引:3,自引:0,他引:3  
比较系统地研究了AB2型Laves相合金Zr0.9Ti0.1Ni0.1Mn0.7V0.3M0.1(M=None,Ni.Mn.V.Co.Cr.Al.Fe,Mo.Si.C.Zn,Cu和B)的相结构和电化学性能以及高温和低温放电性能等.结果表明.14种合金均具有六方C14型Laves相的主相晶体结构.同时,含有少量立方Cl5型Laves相和一些由Zr9Ni11及ZrNi组成的非Laves相;添加V和Mn可提高AB2合金的放电容量;添加B和Mn则显著提高了AB2合金的高倍率放电性能和低温放电容量;添加Al,C.Si和Co对合金电极的循环稳定性改善明显;而Mn.Ni.V.Fe.Cu.Mo和B等却不同程度地降低了循环稳定性;添加Si.Mo,V,Cr和Al可明显改善合金电极的自放电性能;添加Si.Cr.V可显著改善AB2合金电极的高温放电性能.讨论了各种添加元素影响合金性能的可能原因.  相似文献   

4.
Ti0.26Zr0.07V0.24Mn0.1Ni0.33Bx(x=0~0.10)系列合金均有V基固溶体相和C14型Laves相两相组成。添加B可提高Ti0.26Zr0.07V0.24 Mn0.1Ni0.33合金的放电容量, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.1合金电极在60 mA·g-1电流放电时的放电容量达到476.7 mAh·g-1.B的添加不同程度地降低了合金的高倍率放电性能, 使合金电极表面上电化学反应的电荷转移电阻(Rct)显着增加, 交换电流密度(I0)显着降低。添加B可显着改善Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金电极的高温放电性能, Ti0.26Zr0.07V0.24Mn0.1Ni0.33B0.025合金电极在343 K高温下其放电容量达到525.6 mAh·g-1.  相似文献   

5.
用真空电弧熔炼方法制备了Zr1-xScxMn0.6V0.2Ni1.2Co0.1(x=0~1)AB2型储氢合金,研究了Sc元素替代Zr对合金的微观组织结构、气态储氢及电化学性能的影响。研究结果表明,Zr1-xScxMn0.6V0.2Ni1.2Co0.1合金主要是由FCC型C15相、CsCl型结构的(ScZr)Ni相和少量的Ni10Zr7相组成,随Sc含量的增加,C15相丰度逐渐减小,(ScZr)Ni相丰度逐渐增加,当x=0.2时Ni10Zr7相基本消失;Sc元素对合金的首次气态吸氢动力学行为影响较大,随Sc含量的增加,合金吸氢动力学性能逐渐变缓,但吸氢容量逐渐提高,直至达x=1.0时的最大吸氢量1.87%;Sc元素对合金吸氢PCT曲线平衡氢压的影响规律不明显,随Sc含量增加,合金氢化物的形成焓ΔH从-26.66 kJ.mol-1逐渐减小到-8.14 kJ.mol-1。Sc元素的加入可明显改善合金电极的活化性能,提高放电容量,随Sc含量的增加,合金电极最大放电容量从x=0时的350.3 mAh.g-1增加到x=1时的429.8 mAh.g-1,呈先减小后增大的趋势,但电极容量的保持率S100随Sc含量增加而快速下降。  相似文献   

6.
稀土对Ti-Zr-V-Cr-Ni合金微观结构和电化学性能的影响   总被引:2,自引:1,他引:2  
研究了稀土对Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金的微观结构和电化学性能的影响。结果表明,Ti0.17Zr0.08V0.35Cr0.1Ni0.3和Ti0.17Zr0.08V0.35Cr0.1Ni0.3RE0.05(RE分别代表La,Ce,Pr,Nd和混合稀土)合金均由主相为体心立方结构的钒基固溶体相和少量六方结构的C14 Laves相组成;在合金中加入稀土元素,同时增大合金中两相的晶胞体积。镧和其他金属元素结合形成新相分布于合金中。添加稀土元素可以改善合金电极的活化性能。镧的添加降低了合金电极在60 mA.g-1下的最大放电容量,但对其理论放电容量几乎没有影响;合金的放电容量对温度的变化比较敏感,过高的温度使其容量发生衰减,含稀土元素的合金电极在323 K温度下放电容量达到最大值。稀土对合金电极的荷电保持率产生不利影响,镧、钕和混合稀土的添加能够改善合金电极的倍率放电性能。  相似文献   

7.
研究了添加5种稀土元素对Ti0.26Zr0.07V0.24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24Mn0.1Ni0.33RE0.01(RE=La,Ce,Pr,Nd,Gd)合金均由体心立方结构的BCC主相和少量六方结构的C14型Laves相组成;在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。添加5种稀土元素都可以改善合金电极的活化性能,而对合金电极其他性能的影响则各有不同,其中添加铈和镨可以提高合金电极的最大放电容量,而添加钕和钆能改善合金电极的循环稳定性。工作温度对合金电极的放电容量影响较大,过高的温度使其循环容量衰减加剧;而含稀土元素的合金电极在333K温度下放电容量达到最大值。稀土对合金电极的荷电保持率产生一定影响;镧、铈、镨的添加能够改善合金电极的倍率放电性能。  相似文献   

8.
本文通过XRD、SEM、EDS研究了Ti0.4Zr0.1V1.1Mn0.5Cr0.1Nix(x=0,0.2,0.4,0.6,0.8)合金的相结构和电化学性能.该合金系由BCC结构的V基固溶体主相和六方结构的C14 Laves第二相组成,Ni能够促进第二相的生成,Ni含量的增加导致了各相中的化学组成和晶格参数的变化,并通过电化学方法研究了Ni含量对Ti0.4Zr0.1V1.1Mn0.5Cr0.1合金电极的最大放电容量、自放电性能、高倍率放电性能、循环稳定性能等的影响.  相似文献   

9.
用机械球磨法分别以Ti、B、复合物TiB对非晶态Mg45Ti3V2Ni50储氢合金进行了表面修饰.实验结果表明,恰当比例的TiB球磨修饰对镁基储氢合金循环稳定性远好于Ti、B同比例单独修饰合金电极的效果.Mg45Ti3V2Ni50与TiB质量比为2∶1的Mg45Ti3V2Ni50-TiB(2∶1)复合合金电极的初始放电容量为529.4mAh·g-1,第50次循环放电容量仍为277.1mAh·g-1.复合物TiB中Ti、B元素之间和复合合金中合金元素与TiB之间产生了金属与非金属的协同作用,导致复合合金新的立体褶皱结构的生成,增强了修饰层与合金间的作用,Mg45Ti3V2Ni50-TiB(2∶1)合金电极表面活性增强,循环稳定性显著提高.  相似文献   

10.
研究了5种稀土元素部分取代V对Ti0.26Zr0.07V0..24Mn0.1Ni0.33合金的微观结构和电化学性能的影响。结果表明,Ti0.26Zr0.07V0.24Mn0.1Ni0.33和Ti0.26Zr0.07V0.24-xMn0.1Ni0.33RExx=0.005;RE=La,Ce,Nd,Ho,Y)均由体心立方结构的钒基固溶体相和六方结构的C14Laves相组成。在合金中加入稀土元素,会使合金中两相的晶胞体积同时增大。稀土元素部分取代V均改善了合金电极的活化性能。La和Nd元素取代后,合金电极的最大放电容量明显增加,而Ce的取代提高了合金电极的循环稳定性。Ce,Nd,Ho,Y均改善了合金电极的倍率放电性能。合金电极在高温状态下表现出了良好的放电性能,其中Nd在333K时放电容量可达550.4mAh·g-1。稀土元素对荷电保持率的影响各异。  相似文献   

11.
采用XRD、FESEM-EDS、ICP及EIS等方法研究了Ti0.17Zr0.08V0.34Nb0.01Cr0.1Ni0.3氢化物电极合金微观结构和电化学性能。X射线衍射分析表明:该合金由体心立方结构(bcc)的V基固溶体主相和少量六方结构的C14型Laves相组成;FESEM及EDS分析表明:V基固溶体主相形成树枝晶,C14型Laves相呈网格状围绕着树枝晶的晶界,元素在两相中的分布呈现镜像关系。电化学性能测试结果表明:该合金的氢化物电极在303~343 K较宽的温度区间内,表现出较高的电化学容量,在303 K和343 K时,电化学容量分别为337.0 mAh·g-1和327.9 mAh·g-1。在303 K循环100周后,容量为282.7 mAh·g-1。ICP分析结果表明,氢化物电极在充放电循环过程中,V及Zr元素向KOH电解质中的溶出较为严重。EIS研究表明,金属氢化物电极表面电化学反应的电荷转移电阻(RT)随循环次数的增加而增加,相应的交换电流密度则随循环次数的增加而降低。氢化物电极循环过程中RT的增大以及V和Zr元素的溶解,可能是导致电极容量衰减的主要原因。  相似文献   

12.
为了提高AB3型合金Mm_(0.78)Mg_(0.22)Ni_(2.48)Mn_(0.09)Al_(0.23)Co_(0.47)(Mm由82.3%La和17.7%Nd组成)的电化学性能,将石墨烯添加到合金中。通过XRD和SEM可以看出,石墨烯并没有改变合金的相结构,仅是简单地附在合金表面。当加入质量分数为2%的石墨烯时,合金电极的最大放电容量Cmax达到364.9 m Ah·g-1。石墨烯的添加加速了合金表面的电化学反应。  相似文献   

13.
Laves-phase hydrogen storage alloy has a high potential for use as negative electrode material as alternative for the misch-metal-based material. In order to improve the energy density and the rate capability of negative electrode, chemical and mechanical modification of Lavesphase alloy with different stoichiometric ratios was carried out. Discharge capacity and high-rate dischargeabilty was evaluated by electrochemical methods and the characterization of Laves-phase alloy was made by X-ray diffraction, SEM observation and PCT measurement. The best result in discharge capacity could be obtained for stoichiometric Laves-phase alloy with a composition of Zr0.9Ti0.1Ni1.1Co0.1Mn0.5V0.2Cr0.1 by boiling in 10 M KOH solution. On the other hand, the high-rate dischargeability was increased remarkably by introducing mechanical grinding before alkali treatment. The cause for improved performance was discussed on the basis of thermodynamic stability of metal hydride and changes in crystal structure and surface morphology influencing on diffusion coefficient and diffusion path length of hydrogen.  相似文献   

14.
为了改善富锂锰基正极材料Li1.2Mn0.54Ni0.13Co0.13O2 的循环性能,采用燃烧法合成了正极材料Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06). 通过X射线衍射(XRD)和扫描电镜(SEM)对其结构与形貌进行了表征,利用恒电流充放电测试,循环伏安(CV)及电化学交流阻抗谱(EIS)技术对其电化学性能进行测试. 结果表明,Li1.2Mn0.54-xNi0.13Co0.13ZrxO2(x=0.00,0.01,0.02,0.03,0.06)正极材料均具有α-NaFeO2型层状结构;在室温,2.0-4.8 V电压范围,以0.1C和1.0C(充放电电流以1.0C=180 mA·g-1计算)倍率充放电进行测试,样品Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2的首次放电比容量分别为280.3 和206.4 mAh·g-1. 其中,在1.0C倍率下,100次循环后容量保持率由原来的73.2%提高到88.9%;以5.0C倍率充放电进行测试,经50次循环后,掺杂正极材料的放电比容量为76.5 mAh·g-1,而未掺杂材料仅有15.0 mAh·g-1. 在50、25 和-10 ℃,2.0C倍率条件下,掺杂正极材料的电化学性能均得到有效改善,其中,在- 10℃ 经过50 次循环后正极材料Li1.2Mn0.52Ni0.13Co0.13Zr0.02O2比未掺杂的正极材料相比,其放电比容量提高了61.1%.  相似文献   

15.
本文通过XRD、SEM、EDS研究了Ti0.4Zr0.1V1.1Mn0.5Cr0.1Nix(x=0,0.2,0.4,0.6,0.8)合金的相结构和电化学性能。该合金系由BCC结构的V基固溶体主相和六方结构的C14 Laves第二相组成,Ni能够促进第二相的生成,Ni含量的增加导致了各相中的化学组成和晶格参数的变化,并通过电化学方法研究了Ni含量对0.4Zr0.1V1.1Mn0.5Cr0.1合金电极的最大放电容量、自放电性能、高倍率放电性能、循环稳定性能等的影响。  相似文献   

16.
以乙酸盐(乙酸锂、乙酸钠、乙酸钴、乙酸镍、乙酸锰等)为原材料,采用球磨辅助高温固相法制备Li1.0Na0.2Ni0.13Co0.13Mn0.54O2正极材料。借助XRD、SEM等表征材料的结构和形貌,利用循环伏安、恒流充放电、交流阻抗等方法研究材料的电化学性能。结果表明,钠的掺杂导致颗粒表面光滑度降低,形成Na0.77MnO2.05新相。0.05C活化过程中,掺钠样品和未掺钠样品首次放电比容量分别为258.4 mAh·g-1和215.8 mAh·g-1,库伦效率分别为75.2%和72.8%;2C放电比容量分别为116.3 mAh·g-1和106.2 mAh·g-1。研究发现,掺钠可减小首次充放电过程的不可逆容量,提高容量保持率;改善倍率性能与容量恢复特性;降低SEI膜阻抗和电荷转移阻抗;掺钠后样品首次循环就可以基本完成Li2MnO3组分向稳定结构的转化,而未掺杂的样品需要两次循环才能逐步完成该过程;XPS结果表明,掺钠样品中Ni2+、Co3+、Mn4+所占比例明显提高,改善了样品的稳定性和电化学性能;循环200次后的XRD结果表明掺钠与未掺钠材料在脱嵌锂反应中的相变化过程基本一致,良好有序的层状结构遭到破坏是循环过程中容量衰减的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号