首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.  相似文献   

2.
ABSTRACT

The wide application of titanium dioxide nanoparticles (TiO2 NPs) has caused a large number of TiO2 NPs to be released into the water environment without treatment, which would inevitably result in unexpected toxic damage to aquatic animals. The objects of this research were to discuss the toxic effects of TiO2 NPs to Tetrahymena pyriformis (T. pyriformis) under dark and light conditions. The Fourier transform infrared (FTIR) spectra were utilized to investigate the biochemical constituent changes of T. pyriformis under the exposure of TiO2 NPs. The results showed that illumination had little effect on the cell numbers of T. pyriformis after 24 hr exposure at 5 mg/L of TiO2 concentration. However, the cell viability of TiO2 NP–exposed T. pyriformis under light illumination (81.4%) decreased compared with that in the dark environment (96.1%). The FTIR results showed that the typical absorption band of the CH2 asymmetric stretching vibration shifted from 2924.64 to 2925.49 cm?1 in the dark, which indicated an increase in membrane fluidity without illumination. A decreased intensity (p < 0.05) was observed in amide I and amide II from 98.57 ± 9.62 and 41.88 ± 3.63 to 75.65 ± 4.07 and 25.25 ± 1.12 in the irradiated T. pyriformis, respectively, which suggested that the coexistence of TiO2 NPs and light could induce an obvious decrease of protein. In the light condition, the overproduction of ROS led to the breakdown of balance of the oxidative/antioxidative system, resulting in the lipid peroxidation and the death of cells. The results further reveal that TiO2 NPs under light conditions are more toxic than in the dark.  相似文献   

3.
In the synthesis of nanostructures by pulsed laser deposition (PLD), a crucial role is played by the environmental deposition pressure and the substrate temperature. Due to the high temperature of nanoparticles (NPs) at landing, other factors may determine the structure of the resulting aggregates. Here, Au and TiO2 nanostructures are obtained by non-thermal fs-PLD in ambient conditions. On Si(100), only TiO2 NPs form fractals with areas up to ~ 1 × 106 nm2, while on quartz Au NPs also form fractals with areas up to ~ 5 × 103 nm2, a much smaller size with respect to the TiO2 case. The aggregation is described by a simple diffusive model, taking into account isotropic diffusion of the NPs, allowing quantitative simulations of the NPs and fractal area. The results highlight the key role of substrate thermal conductivity in determining the formation of fractals.
Graphical abstract ?
  相似文献   

4.
The undoped, Fe-doped, N-doped and Fe+N codoped titanium dioxide (TiO2) samples were synthesized. Detailed analysis shows that all the samples are pure anatase with the shape of a nanorod, and N and Fe ions are incorporated into the TiO2 lattice. For all the samples, the saturation magnetization at room temperature is in the order of the Fe+N codoped TiO2>N-doped TiO2>Fe-doped TiO2>undoped TiO2. Upon N doping, enhanced ferromagnetic properties were observed. The N content in Fe+N codoped TiO2 is about two times as large as that in the N-doped TiO2, which may account for the largest saturation magnetization observed in Fe+N codoped TiO2. It is suggested that metal ion and N codoping may provide a new approach for increasing the saturation magnetization in TiO2-based dilute magnetic semiconductors.  相似文献   

5.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

6.
Fe-doped TiO2 powder was prepared by high-energy ball milling, using TiO2 Degussa P-25 and α-Fe powders as the starting materials. The structure and magnetic properties of the Fe-doped TiO2 powder were studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and vibrating sample magnetometer. The Reitveld refinement of XRD revealed that ball milling not only triggered incorporation of Fe in TiO2 lattice but also induced the phase transformation from anatase to rutile in TiO2 and consequently the milled Fe-doped TiO2 powder contained only rutile.57Fe Mössbauer effect measure showed that Fe atoms existed in Fe2+ and Fe3+ state, which were assigned to the solid solution FexTi1−xO2. The magnetization measurements indicated that the milled Fe-doped TiO2 powder was ferromagnetic above room temperature. The ferromagnetism in our milled Fe-doped TiO2 powder seemingly does not come from Fe and iron oxides particles/clusters but from the Fe-doped TiO2 powder matrices.  相似文献   

7.
In this paper, pure and Zn‐doped TiO2 nanoparticles (NPs) with various content of Zn were prepared by a sol–hydrothermal method and were employed as active substrates for surface‐enhanced Raman scattering (SERS). On the 3% Zn‐doped TiO2 substrate, 4‐mercaptobenzoic acid(4‐MBA) molecules exhibit a higher SERS intensity by a factor of 6, as compared with the native enhancement of 4‐MBA adsorbed on undoped TiO2 NPs. Moreover, the higher SERS activity was still observed on the 3% Zn‐doped TiO2 NPs at temperature even up to 125 °C. These results indicate that an appropriate amount of Zn doping can improve the SERS performances of TiO2 SERS‐active substrates. The introduction of Zn dopant can enrich the surface states (defects) of TiO2 and improve the separation efficiency of photo‐generated charge carriers (electrons and holes) in TiO2, according to measurements of X‐ray diffraction, UV‐visible diffuse reflectance spectroscopy, and photoluminescence, which are responsible for the influence of Zn dopant on the improved SERS performances of TiO2 NPs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Titanium dioxide nanoparticles (TiO2 NPs) have attracted considerable concerns due to the increasing production and widespread applications, while their influences on other co-existing pollutants in real environment are not well studied. In this paper, the colloidal stability of TiO2 NPs in the exposure medium was first evaluated, and then, the medium was modified so that TiO2 NP suspension remained stable over the exposure period. Finally, using the optimized exposure medium, the effects of cadmium (Cd) and lead (Pb) on Daphnia magna both in the absence and presence of TiO2 NPs were investigated. Results showed that 2 mg L?1 of TiO2 NPs was well dispersed in 1:20 diluted Elendt M7 medium without EDTA, and no immobility was observed. The presence of the nanoparticles increased the bioaccumulation and toxicity of Cd to the daphnias. On the contrary, while Pb bioaccumulation was enhanced by three to four times, toxicity of Pb was reduced in the presence of TiO2 NPs. The decreased toxicity of Pb was more likely attributed to the decreased bioavailability of free Pb ion due to adsorption and speciation change of Pb in the presence of TiO2 NPs. Additionally, surface-attached TiO2 NPs combined with adsorbed heavy metals caused adverse effects on daphnia swimming and molting behavior, which is supposed to lead to chronic toxicity.  相似文献   

9.
The potential for using hydroxyl radical (OH?) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H2O2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H2O2 by NP surface generated OH? were investigated. Depending on the ratio of iron and H2O2, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.  相似文献   

10.
The ZnO nanowire (NW) array/TiO2 nanoparticle (NP) composite photoelectrode with controllable NW aspect ratio has been grown from aqueous solutions for the fabrication of dye-sensitized solar cells (DSSCs), which combines the advantages of the rapid electron transport in ZnO NW array and the high surface area of TiO2 NPs. The results indicate that the composite photoelectrode achieves higher overall photoelectrical conversion efficiency (η) than the ZnO NW alone. As a result, DSSCs based on the ZnO NW array/TiO2 NP composite photoelectrodes get the enhanced photoelectrical conversion efficiency, and the highest η is also achieved by rational tuning the aspect ratio of ZnO NWs. With the proper aspect ratio (ca. 6) of ZnO NW, the ZnO NW array/TiO2 NP composite DSSC exhibits the highest conversion efficiency (5.5 %). It is elucidated by the dye adsorption amount and interfacial electron transport of DSSCs with the ZnO NW array/TiO2 NP composite photoelectrode, which is quantitatively characterized using the UV-Vis absorption spectra and electrochemical impedance spectra. It is evident that the DSSC with the proper aspect ratio of ZnO NW displays the high dye adsorption amount and fastest interfacial electron transfer.  相似文献   

11.
This study presents a novel exposure protocol for synthesized nanoparticles (NPs). NPs were synthesized in gas phase by thermal decomposition of metal alkoxide vapors in a laminar flow reactor. The exposure protocol was used to estimate the deposition fraction of titanium dioxide (TiO2) NPs to mice lung. The experiments were conducted at aerosol mass concentrations of 0.8, 7.2, 10.0, and 28.5 mg m?3. The means of aerosol geometric mobility diameter and aerodynamic diameter were 80 and 124 nm, and the geometric standard deviations were 1.8 and 1.7, respectively. The effective density of the particles was approximately from 1.5 to 1.7 g cm?3. Particle concentration varied from 4 × 105 cm?3 at mass concentrations of 0.8 mg m?3 to 12 × 106 cm?3 at 28.5 mg m?3. Particle phase structures were 74% of anatase and 26% of brookite with respective crystallite sized of 41 and 6 nm. The brookite crystallites were approximately 100 times the size of the anatase crystallites. The TiO2 particles were porous and highly agglomerated, with a mean primary particle size of 21 nm. The specific surface area of TiO2 powder was 61 m2 g?1. We defined mice respiratory minute volume (RMV) value during exposure to TiO2 aerosol. Both TiO2 particulate matter and gaseous by-products affected respiratory parameters. The RMV values were used to quantify the deposition fraction of TiO2 matter by using two different methods. According to individual samples, the deposition fraction was 8% on an average, and when defined from aerosol mass concentration series, it was 7%. These results show that the exposure protocol can be used to study toxicological effects of synthesized NPs.  相似文献   

12.
13.
Iron-doped TiO2 nanoparticles with iron content in the range of 0.005 < Fe/Ti < 0.3 were prepared using the flame spray pyrolysis method and investigated with CW X-band electron paramagnetic resonance (EPR), X-ray diffraction, and Fourier transform infrared spectroscopy. This allowed for the clarification of the internal organization of Fe–TiO2 nanoparticles. Different types of Fe(III) centers were distinguished in the samples: isolated high-spin paramagnetic Fe(III) ions (S = 5/2) in rhombic ligand fields state at 0.005 < Fe/Ti < 0.05, and Fe(III) ferromagnetic clusters at Fe/Ti < 0.1. All Fe-doped samples had rather high activity for the photocatalytic mineralization of oxalic acid under visible light illumination (λ > 400 nm) at 25 °C. Correlations were made between EPR and photocatalytic activity results. The specific surface area [S] data allowed us to deduce that the isolated Fe(III) centers were responsible for the photomineralisation of oxalic acid, while the Fe(III) ferromagnetic aggregates decreased the total efficiency of the system.  相似文献   

14.
Three-dimensional (3D) hierarchical rutile TiO2 microspheres composed of nanorods with diameter of several-tens of nanometers, with different morphologies and with average size ranging from 1.3 to 1.8 μm, were successfully synthesized through a surfactant-free solvothermal route. The effects of the solvents n-hexane, chloroform, and cyclohexane on the microstructures of 3D hierarchical TiO2 nanostructures were investigated. Results of scanning electron microscopy showed that 3D sea-urchin like hierarchical TiO2 composed of nanorods with a diameter of ~10 nm can only be prepared in the cyclohexane-water system. The growth mechanism of 3D sea-urchin like hierarchical TiO2 composed of numerous nanorods was further examined and found to differ from the well-known “growth → assembly” mode. The effects of surface tension and polarity of solvents on the morphology and crystal strength of 3D hierarchical TiO2 nanostructure were also investigated. In addition, the prepared 3D sea-urchin like hierarchical TiO2 showed highest photocatalytic activity compared with other 3D hierarchical TiO2 nanostructures in this study and Degussa P25 for the degradation of Rhodamine B solution under UV light irradiation, which could be attributed to its special hierarchical superstructure, the increase of surface catalytic sites and its special composition units.  相似文献   

15.
The effect of different milling conditions on the formation of Fe-doped TiO2 powders by mechanical alloying was investigated by Mössbauer spectrometry. The milling conditions investigated were ball to powder weight ratio, milling time, rotation velocity of supporting disc, and the type of starting reactive iron and its concentration. X-ray diffraction shows that high energy mechanical milling of undoped anatase TiO2 induce the anatase to rutile phase transformation via high pressure srilankite. Mössbauer spectra for the majority of the doped samples were decomposed into one sextet and one or two doublets. The sextets was attributed to the presence of α-Fe or hematite impurities. The doublets were assigned to Fe3?+? incorporated in the TiO2 structure, and to the Fe2?+? located either at the surface or the interstitial sites of TiO2. A greater incorporation of Fe in the TiO2 structure was observed when samples were prepared from hematite instead of α-Fe.  相似文献   

16.
Monodisperse iron oxide nanoparticles (NPs) of 4 nm were obtained through high-temperature solution phase reaction of iron (III) acetylacetonate with 1, 2-hexadecanediol in the presence of oleic acid and oleylamine. The as-synthesized iron oxide nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and magnetic measurements. The species obtained were Fe3O4 and/or $\upgamma$ -Fe2O3. These NPs are superparamagnetic at room temperature and even though the reduced particle size they show a high saturation magnetization (MS ≈ 90 emu/g).  相似文献   

17.
Fe-doped titania films were deposited by RF sputtering onto different substrates (glass and ITO/glass) in the same deposition run. The rutile nanocrystalline structure of Fe-doped thin films deposited on glass substrates and anatase nanocrystalline structure of Fe-doped thin films deposited on ITO/glass substrates were evidenced by XRD. SEM investigations showed a smooth surface with a dense nanostructure. XPS study evidenced an almost stoichiometric composition with different iron contents. EPR and XPS studies evidenced that iron entered into TiO2 lattice by substitution, as isolated and dimer species. In Fe-doped thin films deposited on ITO/glass substrates the iron content is ten times higher than in Fe-doped thin films deposited on glass substrates and that a part of them entered as Fe2+.  相似文献   

18.
We present a new method of synthesizing ZnO/TiO2 core–shell nanowire (NW) arrays for the fabrication of dye-sensitized solar cells (DSSCs). Vertically aligned ZnO NW arrays were obtained on Si substrates, and modified by a TiO2 shell in order to solve the recombination problems via a cost-effective spin-coating method. The structure of the ZnO/TiO2 composite NW arrays was characterized. The experimental results indicate that the TiO2 shell enhances the performance of the DSSCs, through improving the stability of the ZnO NWs and decreasing the recombination of photogenerated electrons on the NW surface. The highest overall conversion efficiency of the cell reaches about 3.0 %.  相似文献   

19.
Undoped and Zn-doped TiO2 nanoparticles were synthesized by the sol gel method. The dopant (Zn) was taken at 0.1, 0.2, 0.5, 0.7, and 1.0 mol%. The initial precursors were titanium tetraisopropoxide and zinc acetate. The samples were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and UV–vis diffuse reflectance. The photocatalytic activity of the prepared nanoparticles was studied by observing their role in degradation of two azo dyes, i.e., Eriochrome Black T and Methyl Red under UV–visible light. The results revealed that Zn-doped TiO2 nanoparticles exhibited better degradation as compared to undoped TiO2 nanoparticles. In this study, 0.7 mol% Zn-doped TiO2 showed highest photocatalytic activity. Doping of Zn allowed better separation of electron–hole pairs which results in increased oxidation and reduction reactions.  相似文献   

20.
In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号