首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A one-step 7-stage Hermite-Birkhoff-Taylor method of order 11, denoted by HBT(11)7, is constructed for solving nonstiff first-order initial value problems y=f(t,y), y(t0)=y0. The method adds the derivatives y to y(6), used in Taylor methods, to a 7-stage Runge-Kutta method of order 6. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution to order 11 leads to Taylor- and Runge-Kutta-type order conditions. These conditions are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. The new method has a larger scaled interval of absolute stability than the Dormand-Prince DP87 and a larger unscaled interval of absolute stability than the Taylor method, T11, of order 11. HBT(11)7 is superior to DP87 and T11 in solving several problems often used to test higher-order ODE solvers on the basis of the number of steps, CPU time, and maximum global error. Numerical results show the benefit of adding high-order derivatives to Runge-Kutta methods.  相似文献   

2.
A one-step 9-stage Hermite–Birkhoff–Taylor method of order 10, denoted by HBT(10)9, is constructed for solving nonstiff systems of first-order differential equations of the form y′=f(x,y), y(x 0)=y 0. The method uses y′ and higher derivatives y (2) to y (4) as in Taylor methods and is combined with a 9-stage Runge–Kutta method. Forcing a Taylor expansion of the numerical solution to agree with an expansion of the true solution leads to Taylor- and Runge–Kutta-type order conditions which are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. The new method has a larger scaled interval of absolute stability than Dormand–Prince DP(8,7)13M. The stepsize is controlled by means of y (2) and y (4). HBT(10)9 is superior to DP(8,7)13M and Taylor method of order 10 in solving several problems often used to test high-order ODE solvers on the basis of the number of steps, CPU time, and maximum global error. These numerical results show the benefits of adding high-order derivatives to Runge–Kutta methods.  相似文献   

3.
The ODE solver HBT(12)5 of order 12 (T. Nguyen-Ba, H. Hao, H. Yagoub, R. Vaillancourt, One-step 5-stage Hermite-Birkho-Taylor ODE solver of order 12, Appl. Math. Comput. 211 (2009) 313-328. doi:10.1016/j.amc.2009.01.043), which combines a Taylor series method of order 9 with a Runge-Kutta method of order 4, is expanded into the DAE solver HBT(12)5DAE of order 12. Dormand-Prince’s DP(8, 7)13M is also expanded into the DAE solver DP(8, 7)DAE. Pryce structural pre-analysis, extended ODEs and ODE first-order forms are adapted to these DAE solvers with a stepsize control based on local error estimators and a modified Pryce algorithm to advance integration. HBT(12)5DAE uses only the first nine derivatives of the unknown variables as opposed to the first 12 derivatives used by the Taylor series method T12DAE of order 12. Numerical results show the advantage of HBT(12)5DAE over T12DAE, DP(8, 7)DAE and other known DAE solvers.  相似文献   

4.
In this paper, we are concerned with the oscillation of third order nonlinear delay differential equations of the form
(r2(t)(r1(t)y))+p(t)y+q(t)f(y(g(t)))=0.  相似文献   

5.
A family of one-step, explicit, contractivity preserving, multi-stage, multi-derivative, Hermite–Birkhoff–Taylor methods of order p =?5,6,…,14, that we denote by CPHBTRK4(d,s,p), with nonnegative coefficients are constructed by casting s-stage Runge–Kutta methods of order 4 with Taylor methods of order d. The constructed CPHBTRK4 methods are implemented using efficient variable step control and are compared to other well-known methods on a variety of initial value problems. A selected method: CP 6-stages 9-derivative HBT method of order 12, denoted by CPHBTRK412, has larger region of absolute stability than Dormand–Prince DP(8,7)13M and Taylor method T(12) of order 12. It is superior to DP(8,7)13M and T(12) methods on the basis the number of steps, CPU time, and maximum global error on several problems often used to test higher-order ODE solvers. Also, we show that the contractivity preserving property of CPHBTRK412is very efficient in suppressing the effect of the propagation of discretization errors and the new method compares positively with explicit 17 stages Runge-Kutta-Nyström pair of order 12 by Sharp et al. on a long-term integration of a standard N-body problem. The selected CPHBTRK412is listed in the Appendix.  相似文献   

6.
We would like to investigate on the solution to the automatic control problem given by the differential equation y′(t) = f(ty(t), w(t)) for a given initial function x in the initial domain D(x, ω, Y) for almost all t in the interval I, with controls given by w(t) = g(ty(t), T(y)(t)), where T is a nonanticipating and Lipschitzian operator. The result will be generalized for a dynamical system y′(t) = f(ty(t), T(y), u(t)).  相似文献   

7.
In this paper, we study the behavior of solutions of second order delay differential equation
y(t)=p1y(t)+p2y(tτ)+q1y(t)+q2y(tτ),  相似文献   

8.
In this paper, we are concerned with the oscillation of second order superlinear differential equations of the form
(a(t)y(t))+p(t)y(t)+q(t)f(y(t))=0.  相似文献   

9.
We consider an inverse problem for identifying a leading coefficient α(x) in −(α(x)y′(x))′ + q(x)y(x) = H(x), which is known as an inverse coefficient problem for the Sturm-Liouville operator. We transform y(x) to u(xt) =  (1 + t)y(x) and derive a parabolic type PDE in a fictitious time domain of t. Then we develop a Lie-group adaptive method (LGAM) to find the coefficient function α(x). When α(x) is a continuous function of x, we can identify it very well, by giving boundary data of y, y′ and α. The efficiency of LGAM is confirmed by comparing the numerical results with exact solutions. Although the data used in the identification are limited, we can provide a rather accurate solution of α(x).  相似文献   

10.
In this paper, we consider the problem of finding u = u(xyt) and p = p(t) which satisfy ut = uxx + uyy + p(t)u + ? in R × [0, T], u(xy, 0) = f(xy), (xy) ∈ R = [0, 1] × [0, 1], u is known on the boundary of R and u(xyt) = E(t), 0 < t ? T, where E(t) is known and (xy) is a given point of R. Through a function transformation, the nonlinear two-dimensional diffusion problem is transformed into a linear problem, and a backward Euler scheme is constructed. It is proved by the maximum principle that the scheme is uniquely solvable, unconditionally stable and convergent in L norm. The convergence orders of u and p are of O(τ + h2). The impact of initial data errors on the numerical solution is also considered. Numerical experiments are presented to illustrate the validity of the theoretical results.  相似文献   

11.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

12.
In this paper, a class of multiobjective control problems is considered, where the objective and constraint functions involved are f(tx(t), ?(t), y(t), z(t)) with x(t) ∈ Rn, y(t) ∈ Rn, and z(t) ∈ Rm, where x(t) and z(t) are the control variables and y(t) is the state variable. Under the assumption of invexity and its generalization, duality theorems are proved through a parametric approach to related properly efficient solutions of the primal and dual problems.  相似文献   

13.
The HBT(10)9 method for ODEs is expanded into HBT(10)9DAE for solving nonstiff and moderately stiff systems of fully implicit differential algebraic equations (DAEs) of arbitrarily high fixed index. A scheme to generate first-order derivatives at off-step points is combined with Pryce scheme which generates high order derivatives at step points. The stepsize is controlled by a local error estimator. HBT(10)9DAE uses only the first four derivatives of y instead of the first 10 required by Taylor’s series method T10DAE of order 10. Dormand–Prince’s DP(8,7)13M for ODEs is extended to DP(8,7)DAE for DAEs. HBT(10)9DAE wins over DP(8,7)DAE on several test problems on the basis of CPU time as a function of relative error at the end of the interval of integration. An index-5 problem is equally well solved by HBT(10)9DAE and T10DAE. On this problem, the error in the solution by DP(8,7)DAE increases as time increases.  相似文献   

14.
For a prescribed real number s ∈ [1, 2), we give some sufficient conditions on the coefficients p(x) and q(x) such that every solution y = y(x), y ∈ C2((0, T]) of the linear differential equation (p(x)y′)′ + q(x)y = 0 on (0, T], is bounded and fractal oscillatory near x = 0 with the fractal dimension equal to s. This means that y oscillates near x = 0 and the fractal (box-counting) dimension of the graph Γ(y) of y is equal to s as well as the s dimensional upper Minkowski content (generalized length) of Γ(y) is finite and strictly positive. It verifies that y admits similar kind of the fractal geometric asymptotic behaviour near x = 0 like the chirp function ych(x) = a(x)S(φ(x)), which often occurs in the time-frequency analysis and its various applications. Furthermore, this kind of oscillations is established for the Bessel, chirp and other types of damped linear differential equations given in the form y″ + (μ/x)y′ + g(x)y = 0, x ∈ (0, T]. In order to prove the main results, we state a new criterion for fractal oscillations near x = 0 of real continuous functions which essentially improves related one presented in [1].  相似文献   

15.
This paper is concerned with the linear ODE in the form y′(t) = λρ(t)y(t) + b(t), λ < 0 which represents a simplified storage model of the carbon in the soil. In the first part, we show that, for a periodic function ρ(t), a linear drift in the coefficient b(t) involves a linear drift for the solution of this ODE. In the second part, we extend the previous results to a classical heat non-homogeneous equation. The connection with an analytic semi-group associated to the ODE equation is considered in the third part. Numerical examples are given.  相似文献   

16.
This paper deals with the convergence of the linear multistep methods for the equation x′(t) = ax(t) + a0x([t]). Numerical experiments demonstrate that the 2-step Adams-Bashforth method is only of order p = 0 when applied to the given equation. An improved linear multistep methods is constructed. It is proved that these methods preserve their original convergence order for ordinary differential equations (ODEs) and some numerical experiments are given.  相似文献   

17.
New oscillation criteria of second-order nonlinear differential equations   总被引:1,自引:0,他引:1  
By employing a class of new functions Φ=Φ(t,s,l) and a generalized Riccati technique, some new oscillation and interval oscillation criteria are established for the second-order nonlinear differential equation
(r(t)y(t))+Q(t,y(t),y(t))=0.  相似文献   

18.
A four-stage Hermite–Birkhoff–Obrechkoff method of order 14 with four quantized variable steps, denoted by HBOQ(14)4, is constructed for solving non-stiff systems of first-order differential equations of the form y=f(t,y)y=f(t,y) with initial conditions y(t0)=y0y(t0)=y0. Its formula uses yy, yy and y?y? as in Obrechkoff methods. Forcing a Taylor expansion of the numerical solution to agree with an expansion of the true solution leads to multistep- and Runge–Kutta-type order conditions which are reorganized into linear Vandermonde-type systems. To reduce overhead, simple formulae are derived only once to obtain the values of Hermite–Birkhoff interpolation polynomials in terms of Lagrange basis functions for 16 quantized step size ratios. The step size is controlled by a local error estimator. When programmed in C ++, HBOQ(14)4 is superior to the Dormand–Prince Runge–Kutta pair DP(8,7)13M of order 8 in solving several problems often used to test higher order ODE solvers at stringent tolerances. When programmed in Matlab, it is superior to ode113 in solving costly problems, on the basis of the number of steps, CPU time, and maximum global error. The code is available on the URL www.site.uottawa.ca/~remi.  相似文献   

19.
We analyze a system of discrete fractional difference equations subject to nonlocal boundary conditions. We consider the system of equations given by -Δνiyi(t)=λiai(t+νi-1)fi(y1(t+ν1-1),y2(t+ν2-1)), for t∈[0,b]N0, subject to yi(νi − 2) = ψi(yi) and yi(νi + b) = ?i(yi), for i = 1, 2, where ψi,?i:Rb+3R are given functionals. We also assume that νi ∈ (1, 2], for each i. Although we assume that both ai and fi(y1y2) are nonnegative for each i, we do not necessarily presume that each ψi(yi) and ?i(yi) is nonnegative for each i and each yi ? 0. This generalizes some recent results both on discrete fractional boundary value problems and on discrete integer-order boundary value problems, and our techniques provide new results in each case.  相似文献   

20.
In this paper, we prove the following result: Let f(z) and g(z) be two nonconstant meromorphic(entire) functions, n ≥ 11(n ≥ 6) a positive integer. If fn(z)f′(z) and gn(z)g′(z) have the same fixed-points, then either f(z) = c1ecz2g(z) = c2e− cz2, where c1c2, and c are three constants satisfying 4(c1c2)n + 1c2 = −1, or f(z) ≡ tg(z) for a constant t such that tn + 1 = 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号