首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report on a continuous-wave Nd:YVO4 oscillator at 1342 nm based on the combination of a grown-together composite crystal YVO4/Nd:YVO4/YVO4 and the 888 nm diode-laser direct pumping for the first time. At the absorbed pump power of 102 W, a maximum average output power of 37.2 W at 1342 nm was obtained, corresponding to an optical-optical conversion efficiency of 36.5% and a high slope efficiency of 63.0%, respectively. To the best of our knowledge, this is the highest output power ever obtained for a 1342 nm Nd:YVO4 oscillator.  相似文献   

2.
We present for the first time a Nd:YVO4 laser emitting at 1064 nm intracavity pumped by a 916 nm diode-pumped Nd:LuVO4 laser. A 809 nm laser diode is used to pump the Nd:LuVO4 crystal emitting at 916 nm, a Nd:YVO4 laser crystal was pumped at 916 nm and lased at 1064 nm. Intracavity sum-frequency mixing at 916 and 1064 nm was then realized in a LiB3O6 (LBO) crystal to reach the blue range. We obtained a continuous-wave output power of 216 mW at 492 nm under 19.6 W of incident pump power at 809 nm.  相似文献   

3.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

4.
We present for the first time a dual-wavelength laser operation at 1064 and 914 nm in two NdYVO4 crystals. A 879 nm laser diode is used to pump the first Nd:YVO4 crystal emitting at 914 nm, and the second Nd:YVO4 laser emitting at 1064 nm intracavity pumped at 914 nm. A total output power of 4.28 W at the two fundamental wavelengths was achieved at the absorbed pump power of 13.8 W. The M2 values for 914 and 1064 nm lights at the maximum output power were found to be around 1.3 and 1.1, respectively.  相似文献   

5.
We report on an efficient high-power passively Q-switched UV laser at 355 nm. We take into account the second threshold criterion and the thermal-lensing effect to design and realize a compact reliable passively Q-switched Nd:YVO4 laser with Cr4+:YAG as a saturable absorber. At an incident pump power of 16.3 W, the average output power at 1064 nm reaches 6.2 W with a pulse width of 7 ns and a pulse repetition rate of 56 kHz. Employing the developed passively Q-switched laser to perform the extra-cavity harmonic generations, the maximum average output powers at 532 nm and 355 nm are up to 2.2 W and 1.62 W, respectively.  相似文献   

6.
J. Gao  X. Yu  B. Wei  X. D. Wu 《Laser Physics》2010,20(7):1590-1593
We present experimental investigation on quasi-three-level Nd:YVO4 laser operation at 914 nm under 879 nm diode pumping directly into emitting level. A maximal output power of 3.0 W under an absorbed pump power of 13.4 W was got, corresponding to an optical conversion efficiency of 22.4% and a slope efficiency of 40.3%. To the best of our knowledge, this is the first report on a Nd:YVO4 laser at 914 nm using rod-type single crystal as the gain medium and end pumped by diode directly into the emitting level.  相似文献   

7.
We present a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a BiB3O6 (BiBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 339 mW at 488 nm with a pump laser diode emitting 18.3 W at 808 nm.  相似文献   

8.
By using a piece of single-walled carbon nanotube saturable absorber, the performance of the passively Q-switched composite Nd:YVO4 laser has been demonstrated for the first time. The maximum average output power and the shortest pulse width are 1220 mW and 103 ns at the incident pump power of 5.04 W for a 10% transmission of the output coupler. The highest pulse repetition rate of 415.6 kHz and the largest single-pulse energy of 2.94 μJ are also obtained. The composite Nd:YVO4 crystal has more excellent laser performance than the normal Nd:YVO4 crystal at 1064 nm.  相似文献   

9.
We report a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diodepumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLF crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a LBO crystal to reach the blue radiation. We obtained a continuous-wave output power of 514 mW at 488 nm with a pump laser diode emitting 19.6 W at 808 nm.  相似文献   

10.
X. H. Fu  Y. Che  Y. L. Li 《Laser Physics》2011,21(8):1343-1346
We report a continuous-wave (CW) coherent green radiation at 532 nm by intracavity frequency doubling generation of 1064 nm Nd:Gd0.18Y0.82VO4 laser. With incident pump power of 18.2 W, output power of 1.08 W at 532 nm has been obtained using a 5 mm-long KTP crystal. The optical conversion efficiency was up to 5.9%. At the output power level of 1.08 W, the output stability is better than 5%. The beam quality M2 values were equal to 1.26 and 1.12 in X and Y directions, respectively.  相似文献   

11.
We present the concept and practical realization of a single frequency, tuneable diode pumped Nd:YVO4/YVO4/KTP microchip laser operating at 532 nm. Theoretical analysis of the single mode operation of such a laser configuration is presented. The single frequency operation has been obtained in a birefringent filter, where an YVO4 beam displacer acts as an ideal polarizer. Experimental results are in good agreement with theoretical analysis. We have obtained stable single frequency operation, tuneable over 0.6 nm in the spectral range around 1064 nm. The laser operated with output power up to 110 mW at 53 nm. The total optical efficiency (808 nm to 532 nm) was 14%.  相似文献   

12.
Thermal effect of laser crystal is a very important factor for solid lasers. The most of heat is generated from the quantum loss between pump light and lasing light. If a longer wavelength of pump light is adopted, quantum loss and quantum loss efficiency can be reduced and improved, respectively. In this paper, a Nd:YVO4 laser end-pumped by 887 nm LD is reported. Output power of 25 W is obtained from a single Nd:YVO4, when the crystal absorbs pump light power of 38 W. The corresponding opto-optic conversion efficiency is up to 65.7%. When 30.7 W pump light is absorbed in the crystal, 19.4 W TEM00 is obtained with M x 2 = 1.30, M y 2 = 1.26 and opto-optic conversion efficiency of 63.2%. The laser can work at the Q-switched mode. The uniform pulses are generated at high repetition of 100 kHz. And the conditions of pulse stability are analyzed in this paper.  相似文献   

13.
X. Yu  R. P. Yan  M. Luo  F. Chen  X. D. Li  J. H. Yu 《Laser Physics》2009,19(10):1960-1963
We demonstrated a diode-end-pumped continuous-wave 914 nm laser using a novel grown-together YVO4/Nd:YVO4 crystal for the first time. A maximum output power at 914 nm of 7.5 W with an optical-optical efficiency of 16.3% and a slope efficiency of 24.3% was obtained when the incident pump power was 46.2 W. The beam quality factor M 2 was 3.2 at the output power of 6.0 W. The quality and specification of the grown-together composite YVO4/Nd:YVO4 crystal should be improved. Meanwhile, energy-transfer upconversion spectrum of the composite YVO4/Nd:YVO4 crystal laser was also investigated.  相似文献   

14.
Y. L. Li 《Laser Physics》2011,21(11):1855-1858
We report an efficient laser emission on the 1064 nm 4 F 3/2 to 4 I 11/2 transition in mixed vanadate crystal Nd:Y0.36Gd0.64VO4 under the pump with diode laser at 880 nm. Continuous wave (CW) 10.7 W output power at 1064 nm is obtained under 17.8 W of incident pump power; the slope efficiency with respect to the incident pump power was 71.2%. Moreover, intracavity frequency doubling with LiB3O5 (LBO) nonlinear crystal yielded 4.6 W of green light at 532 nm. An optical-to-optical efficiency with respect to the incident pump power was 25.8%.  相似文献   

15.
A diode-end-pumped actively Q-switched eye-safe intracavity Raman laser at 1532 nm is demonstrated, with Nd:YVO4 as the laser crystal and BaWO4 as the Raman crystal. The highest average power of 1.5 W is obtained, with an incident pump of 12 W and a pulse repetition rate of 35 kHz, corresponding to a diode-to-Stokes conversion efficiency of 12.5%.  相似文献   

16.
We report efficient laser emission on the 914 nm 4 F 3/2 to 4 I 9/2 transition in Nd:YVO4 under the pump with diode lasers at 888 nm for the first time. Continuous wave 6.57 W output power at 914 nm is obtained from a V-type resonator under 18.3 W of absorbed pump power; the slope efficiency with respect to the absorbed pump power was 60.6%. Moreover, intracavity frequency doubling with BiB3O6 (BiBO) nonlinear crystal yielded 1.77 W of deep-blue light at 457 nm with beam quality characterized by an M2 factor of 1.25.  相似文献   

17.
We report a green laser at 532 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1064 nm Nd:Y0.36Gd0.64VO4 laser under in-band diode pumping at 880 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 2.92 W of CW output power at 532 nm is achieved. The optical-to-optical conversion efficiency is up to 16.4%, and the fluctuation of the green output power was better than 2.5% in the given 30 min.  相似文献   

18.
A Nd:YVO4 crystal was pumped directly into the emitting level by a laser diode at 914 nm. We achieved an output power of 1.46 W at 1342 nm for an incident pump power of 18.3 W, corresponding to an optical-to-optical conversion efficiency of 8.0%. The fluctuation of the output power was better than 2.3% in the given 30 min. The beam quality M2 factor value was equal to 1.15 at the maximum output power.  相似文献   

19.
It is reported that efficient continuous-wave (CW) red laser generation at 693 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd:YVO4 laser. With incident pump power of 18.2 W, output power of 278 mW at 693 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 278 mW, the output stability is better than 2.9%.  相似文献   

20.
An efficient single-frequency continuous-wave Nd:YVO4 ring laser pumped at 880 nm is presented. With compact four-mirror ring cavity and optical isolator, we obtained an output power of 14.56 W at 1064 nm, corresponding to a slope efficiency of 61.7% and an optical-to-optical efficiency of 58.4% with respect to the absorbed pump power. The stability of the output power was better than ±0.5% over two hours. At the same time, a beam quality factor of M 2≈1.2 was measured and the line width of the longitudinal mode was about 25 MHz. To the best of our knowledge, this is the highest slope efficiency and optical-to-optical efficiency in single-frequency Nd:YVO4 ring laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号