首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 928 毫秒
1.
A microstructured polymer optical fiber (mPOF) with both ultra-flattened near-zero chromatic dispersion and high birefringence based on Topas cyclic olefin copolymer is designed. Three rings of uniform elliptical air holes are arranged in triangular lattice in the cladding and an extra small defected hole is introduced in the fiber core. Guided modes, dispersion, birefringence and mode confinement properties of the designed mPOF are investigated by using the full-vector finite element method. Dispersion values between ± 0.5 ps/km/nm over the wavelength 1.1-1.7 μm and high birefringence of the order of 10−3 are obtained for the optimized fiber structure. Low confinement losses and small effective mode area are obtained at the same time. The relatively simple architecture of the proposed Topas mPOF can be fabricated by our extrusion-stretching techniques.  相似文献   

2.
We report a novel design of photonic crystal fiber (PCF) with a rectangular array of four closely-spaced, highly elliptical air holes in the core region and a circular-air-hole cladding. The proposed PCF is able to support ultra-wideband single-polarization single-mode (SPSM) transmission from the visible band to the near infrared band. With the aid of the inner cladding formed by the central air holes, one polarization of the fundamental mode can be cut off at very short wavelengths and ultra-wideband SPSM propagation can be achieved. The inner cladding also suppresses the higher order modes and allows large air filling fraction in the outer cladding while the proposed fiber remains SPSM, which significantly reduces the mode effective area and the confinement loss. Our simulation results indicate that the proposed PCF has a 1540 nm SMSP range with <0.25 dB/km confinement loss and an effective area of 2.2 μm2. Moreover, the group velocity dispersion (GVD) of the proposed PCF can also be tuned to be flat and near zero at the near infrared band (∼800 nm) by optimizing the outer cladding structure, potentially enabling many nonlinear applications.  相似文献   

3.
A double-cladding microstructured fiber (MF) is proposed in this paper. The inner cladding of this optical fiber is composed of elliptical air holes and silica. The dependence of dispersion on the diameter of the air holes, the pitch, and the axes of the elliptical holes is investigated numerically. The proposed fiber possesses an ultra flattened dispersion curve over a wide wavelength range, and its dispersion value is small. The effective mode area is approaching to 60 μm2, and the confinement loss is as low as <0.025 dB/km at 1550 nm. While choosing suitable structure parameters, an ultra dispersion-flattened MF within a broadband from1000 nm to 1900 nm can be achieved. The dispersion fluctuation is 0.6-1.0 ps/(nm·km) in all S, C and L band.  相似文献   

4.
A new type fiber bending sensor based on a tilted fiber Bragg grating (TFBG) interacting with a multimode fiber (MMF) is presented. The sensing head is formed by insertion of a small section of MMF between a single-mode fiber (SMF) and the TFBG. The average reflective power in the cladding modes decreases with the increase of curvature. The measurement range of the curvature from 0 to 2.5 m−1 with a measurement sensitivity of −802.4 nW/m−1 is achieved. The proposed sensor is also proved as temperature-independent from the experimental investigation.  相似文献   

5.
A highly birefringent ZBLAN photonic quasi-crystal fiber with a rectangular array of four relatively small circular air holes in the core region is proposed. Through optimizing fiber structure parameters using a full-vector finite-element method combined with perfectly matched layers boundary condition, its birefringence is up to 2.88 × 10−2 and the confinement losses of both polarized modes are less than 4.95 × 10−4 dB/m at 2 μm. To our knowledge, this is the first simulation study showing that a birefringence can be achieved with the order of 10−2 by all-circular-hole PQFs around 2 μm.  相似文献   

6.
The effect of variation of core and cladding index difference, Δn=ncorencladding, on allowable values for the guided mode transverse magnetic propagation constants within a step-index, multi-mode optical fiber is investigated. We use a iterative computational technique to calculate the propagation constants for modes inside and outside the core that satisfy the boundary conditions contained within the characteristic eigen-equation for the TM field components. Evidence of a strong dependence of the allowable propagation constants on changes of Δn is shown.  相似文献   

7.
A high birefringence Ge20Sb15Se65 based photonic crystal fiber (PCF) is proposed. It consists of a central defect core surrounded by two kinds of elliptical air holes with different size. The Finite Difference Time Domain method (FDTD) is used to simulate the guided modes of the designed PCF. The properties of this PCF are investigated including the birefringence, nonlinearity, and polarization mode dispersion in the mid-infrared range. The results show that for the optimized structure parameters, the highest birefringence of 0.1176 is obtained. The maximum nonlinearity coefficients of 38390 w?1km?1 and 49760 w?1km?1 for x- and y-polarization modes are achieved.  相似文献   

8.
S.S. Mishra  Vinod K. Singh 《Optik》2011,122(22):1975-1977
High birefringent and low confinement loss of photonic crystal fiber is reported at wavelength 1.55 μm via Full-Vectorial Finite Element Method (FV-FEM). By suitable designing of three ring hexagonal solid core fiber and also by introducing a pair of large holes along x-axis near the core region, high modal birefringence 3 × 10−3 and low confinement loss 0.019 dB/km are found at wavelength 1.55 μm.  相似文献   

9.
张亚妮 《物理学报》2010,59(12):8632-8639
设计了一种新型矩形点阵光子晶体光纤,该光纤纤芯缺失一根空气柱,包层沿光纤长度方向在普通矩形点阵光子晶体光纤中每两列之间隔一行插入一列空气孔而形成正方形网孔结构.采用全矢量有限元法并结合各向异性完美匹配边界条件,对该光纤的色散、双折射和约束损耗进行了数值模拟.结果发现,该光纤具有高双折射负色散效应和较强的模约束能力,约束损耗小于10-2dB·m-1,通过改变光纤结构参数(即空气孔间隔Λ和相对孔间隔d/Λ),可以调节该光纤高双折射负色散工作波长.若调整光纤结构参数Λ=2.0μm,d/Λ=0.4,该光纤在C波段(1.53—1.565μm)呈现负色散并具有负色散斜率,双折射高达10-2,非线性系数接近55km-1W-1.该光纤将在保偏光通信、色散补偿以及基于四波混频的波长转换器设计等方面具有重要的应用.  相似文献   

10.
A novel hole-assistant microstructured optical fiber with a rectangle-like core and four elliptical holes as cladding is proposed. By employing a full-vector finite element method, the modal birefringence and confinement loss are numerically investigated, and the results show that in such a structure, an ultrahigh modal birefringence of 2.91×10−2 and a low confinement loss (<1 dB/km) can be simultaneously obtained at excited wavelength of 1.55 μm. It is significant that such a microstructured optical fiber is easily fabricated with its simple structure and exhibits improved performance.  相似文献   

11.
In this paper, a highly birefringent index-guiding photonic crystal fiber with low confinement loss is proposed by enlarging the central row of air holes in the structure. By employing the multipole method, properties of this structure, including the effective index, birefringence and confinement loss, are investigated. Simulation results indicate that high birefringence of 1.65 × 10−3 can be reached at the wavelength of 1.55 μm, and a low confinement loss on the order of 10−6 dB/km can be achieved at the same wavelength. Moreover, the impacts of air hole sizes on birefringence and confinement loss are also analyzed in detail.  相似文献   

12.
We investigated a particular design of a highly birefringent PCF with attractive features for pressure sensing applications. A plane-wave method together with the finite element method were used to numerically calculate phase and group modal birefringence, pressure and temperature sensitivities of our fiber. The simulation results together with the experiments demonstrate a considerable difference between a very high phase birefringence (B ∼ 10−3) and a very low negative group birefringence (G −10−3). Our fiber exhibits a low and positive temperature sensitivity (KT < 0.1 rad/(K⋅m)), and relatively high and negative mechanical (pressure) sensitivity (Kp ≤ −10 rad/(MPa⋅m)), which supports its possible use as a mechanical sensor that does not require any temperature compensation.  相似文献   

13.
A new nonlinear dispersion flattened photonic crystal fiber with low confinement loss is proposed. This fiber has threefold symmetry core. The doped region in the core and the big air-holes in the 1st ring can make high nonlinearity in the PCF. And the small air-holes in the 1st ring and the radial increasing diameters air-holes rings in cladding can be used to achieve the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCFs structure parameters. A PCF with flattened dispersion is obtained. The dispersion is less than 0.8 ps/(nm km) and is larger than −0.7 ps/(nm km) from 1.515 μm to 1.622 μm. The nonlinear coefficient is about 12.6456 W−1 km−1, the fundamental mode area is about 10.2579 μm2. The confinement loss is 0.30641 dB/km. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal fibers with high nonlinearities.  相似文献   

14.
A new technique of cavity enhanced absorption spectroscopy is described. Molecular absorption spectra are obtained by recording the transmission maxima of the successive TEMoo resonances of a high-finesse optical cavity when a Distributed Feedback Diode Laser is tuned across them. A noisy cavity output is usually observed in such a measurement since the resonances are spectrally narrower than the laser. We show that a folded (V-shaped) cavity can be used to obtain selective optical feedback from the intracavity field which builds up at resonance. This induces laser linewidth reduction and frequency locking. The linewidth narrowing eliminates the noisy cavity output, and allows measuring the maximum mode transmissions accurately. The frequency locking permits the laser to scan stepwise through the successive cavity modes. Frequency tuning is thus tightly optimized for cavity mode injection. Our setup for this technique of Optical-Feedback Cavity-Enhanced Absorption Spectroscopy (OF-CEAS) includes a 50 cm folded cavity with finesse ∼20 000 (ringdown time ∼20 μs) and allows recording spectra of up to 200 cavity modes (2 cm−1) using 100 ms laser scans. We obtain a noise equivalent absorption coefficient of ∼5×10−10 cm−1 for 1 s averaging over scans, with a dynamic range of four orders of magnitude.  相似文献   

15.
We have used spectroscopic ellipsometry to determine the complex dielectric function of a series of ternary BexZn1−xTe thin films grown by molecular beam epitaxy. The II–VI semiconductor alloys were grown on InP substrates that had an InGaAs buffer layer. After the growth, X-ray diffraction experiments were performed in order to determine the alloy concentration. A standard inversion technique was used to obtain the dielectric functions from the measured ellipsometric spectra, obtained between 2000 nm (5000 cm−1) and 40,000 nm (250 cm−1). By modelling the dielectric function as a collection of oscillators, representing longitudinal and transverse optical phonons of the BexZn1−xTe lattice, we were able to recover the phonon spectra for this alloy system. It is argued that the additional phonon modes that are obtained from ellipsometry are best understood from the recently-proposed percolation model.  相似文献   

16.
A pyrochlore-related Ce2Zr2O8−x phase has been prepared in a reduction reoxidation process from Ce0.5Zr0.5O2 powders. Ce2Zr2O8−x, based on a cubic symmetry with a=1.053 nm, decomposes in nitrogen at 800 °C, but remains stable up to 900 °C in air. It shows mixed oxygen ionic and electronic conductivity. The bulk conductivity at 700 °C is 4×10−4 S cm−1 in air and 1×10−2 S cm−1 in nitrogen, and the activation energy is 1.27 eV in air. In nitrogen, the Arrhenius law is not obeyed, and a curved plot was obtained from 400 to 700 °C; then, the conductivity decreased rapidly due to the thermal decomposition of Ce2Zr2O8−x.  相似文献   

17.
A new high birefringence photonic crystal fiber is proposed within the terahertz frequency region. It has two types of claddings, the inner is composed of six ellipse air holes arranged in a honeycomb array and the outer surrounded by circle holes. By using the full vector finite element method with anisotropic perfectly matched layers absorption boundary condition, the birefringence, chromatic dispersion and confinement loss of the fundamental mode are evaluated. The results show that the birefringence can achieve 10−3 when the wavelength increases from 600 μm to 900 μm. This structure will provide some reference value for the designing of high birefringence terahertz photonic crystal fiber.  相似文献   

18.
Photocatalytic activity of CdS nanoparticles in hydrosulfide-ions air oxidation was revealed and thoroughly investigated. HS photooxidation in the presence of CdS nanoparticles results predominantly in the formation of SO3 2− and SO4 2− ions. Photocatalytic activity of ultrasmall CdS crystallites in HS photooxidation is much more prononced as compared to bulk CdS crystals due to high surface area of nanoparticles, their negligible light scattering, improved separation of photogenerated charge carriers etc. It was shown that hydrosulfide ions can be oxidized in two ways. The first is HS oxidation by the CdS valence band holes. This process rate depends on the rate of comparatively slow reaction between molecular oxygen and CdS conduction band electrons. The second reaction route is the chain-radical HS oxidation induced by photoexcited CdS nanoparticles and propagating in the bulk of a solution. In conditions favourable to chain-radical oxidation of HS(i.e. at low light intensities and CdS concentration and high oxygen and Na2S concentrations) quantum yields of the photoreaction reach 2.5.  相似文献   

19.
The microwave spectrum of bullvalene has been investigated in the region 18–40 GHz. In addition to transitions in the ground vibrational state, transitions arising from five excited vibrational states below 600 cm−1 have also been observed. A combination of microwave intensity measurements and infrared and Raman data has been utilized to assign these vibrations. Three of the vibrations are E-type modes at 241, 355, and 588 cm−1. One is an A1-type mode at 445 cm−1, and another is an A2-type at 266 cm−1. The microwave spectrum indicates the presence of a first-order Coriolis interaction for the E modes at 241 and 588 cm−1. The first-order Coriolis coupling constant q = 0.557 MHz for the 241 cm−1 vibration. The spectral results are consistent with C3v symmetry for bullvalene.  相似文献   

20.
刘旭安  吴根柱  陈达如  刘军  卢启景 《光子学报》2014,40(11):1728-1732
设计了一种新型高双折射光子晶体光纤,即其包层引入椭圆形空气孔,且以三角晶格方式周期排列,纤芯引入亚波长尺寸(~0.16 μm)的微型双孔结构阵列.采用全矢量有限元法和各向异性完美匹配层边界条件分析了该型光子晶体光纤的双折射特性和色散特性,详细介绍了该光子晶体光纤在不同的椭圆率、椭圆归一化面积、微型双孔孔径、两小孔之间间距的情况下双折射和限制损耗随波长的变化曲线.模拟结果表明,通过同时在包层和纤芯引入非对称性,获得了较高的双折射(~10-3量级)和极低(~10-4 dB/km)的限制损耗.提供了一种新的光子晶体光纤设计方法,即通过同时在包层和纤芯引入新结构来同时获得高双折射和低损耗.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号