首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 μg mL−1 for ethanol and 7.01-28.07 μg mL−1 for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.  相似文献   

2.
Hybrid linear analysis (HLA), as a recent factor-based multivariate calibration technique, was applied for the spectrophotometric determination of ternary mixtures of pseudoephedrine hydrochloride (PSU), dextromethorphan hydrobromide (DXT), and sodium benzoate (BNZ). The utilized HLA was assisted by a wavelength selection procedure which was based on the calculation of the net analyte signal (NAS) regression plot in any considered wavelengths window for each test sample, in addition to a moving window strategy for searching the region with maximum linearity of NAS regression plot (minimum error indicator (EI)). HLA was applied because it was simpler to adapt to the NAS regression plot methodology, and also used less factors than partial least squares (PLS). An orthogonal array design was applied for formation of calibration and prediction sets in the concentration ranges 0-7500 μmol L−1 for PSU, 0-300 μmol L−1 for DXT, and 0-1400 μmol L−1 for BNZ. The method had the ability to select wavelength regions that minimize the effect of non-linearity of the spectral data, in addition to that of non-modeled interferences. The application of the selected wavelength regions improved the obtained relative standard error of predictions for PSU, DXT, and BNZ, respectively, from 5.24, 8.67, and 5.48% to 2.19, 5.21, and 3.62% (using lower number of factors). To check the ability of the proposed method in selection of linear regions of spectra, a test for detecting non-linear regions of spectral data in multivariate spectroscopic assays was also described. Additives in the commercial syrup samples did not interfere with their determinations. The method was successfully applied for the determination of pseudoephedrine HCl, dextromethorphan HBr, and sodium benzoate in cough suppressant syrup samples.  相似文献   

3.
Leucovorin (LV) and methotrexate (MTX) were determined in human blood serum samples by using a model based in the net analytical signal concept. The calibration method used is a variation of the original hybrid linear analysis (HLA) method, developed by Goicoechea and Olivieri (HLA/GO). The calibration set was composed by nine serum samples with different amounts of LV and MTX in the range of 0-10 mugml(-1). The selection of the optimum wavelength range involved the calculation of the net analyte signal regression plot for each test sample, in conjunction with the calculation of the minimum error indicator. Relative errors of prediction (REP, %) of 3.0 and 5.3% were calculated for LV and MTX, respectively. Only two factors were necessary to optimize the proposed HLA/GO model. Sensitivity, selectivity, analytical sensitivity and limit of detection of the proposed procedure were calculated. Detection limits of 0.34 and 0.93 mugml(-1) for LV and MTX were determined. The proposed model was tested in the analysis of serum samples, without previous separation steps, obtaining recovery values between 96 and 99%, and between 92 and 103% for LV and MTX, respectively.  相似文献   

4.
A simple method is described for the simultaneous determination of vanilmandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HIAA) and homovanillic acid (HVA) in urine. The compounds are isolated by a one-step sample clean-up on Sephadex G-10, separated by ion-pair reversed-phase liquid chromatography and detected electrochemically. A single analysis is completed within 65 min. Sample clean-up did not cause losses of the compounds of interest. The detection limits in urine were 0.4, 0.8, 1.0 and 1.6 mumol/l for VMA, DOPAC, 5-HIAA and HVA, respectively. 3,4-Dihydroxymandelic acid and vanillic acid (VA) were also detectable, but, under the chromatographic conditions used, they were not resolved from interfering components. VA and 5-HIAA could be analysed separately in the Sephadex G-10 eluate if more restrictive sampling conditions were used. Ingestion of bananas caused an increase of VMA, DOPAC, 5-HIAA and HVA in 24-h urine. After ingestion of vanilla an increased excretion of VA was observed, while the excretion of VMA, DOPAC and HVA was unaffected.  相似文献   

5.
Lu X  Wang H  Du J  Huang B  Liu D  Liu X  Guo H  Xue Z 《The Analyst》2012,137(6):1416-1420
Electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) using metabolites of catecholamines: homovanillic acid (HVA) and vanillylmandelic acid (VMA) as co-reactants were investigated in aqueous solution for the first time. When HVA and VMA were co-existent in the buffer solution containing Ru(bpy)(3)(2+), ECL peaks were observed at a potential corresponding to the oxidation of Ru(bpy)(3)(2+), and the ECL intensity was increased noticeably when the concentrations of HVA and VMA were at lower levels. The linear calibration range was from 8.0 × 10(-5) to 1.0 × 10(-9) M for HVA and VMA. The detection limit (S/N = 3) of HVA and VMA was 4.0 × 10(-10) M. The formation of the excited state Ru(bpy)(3)(2+*) was confirmed to result from the reaction between Ru(bpy)(3)(3+) and the intermediates of HVA or VMA radicals. Moreover, it was found that the ECL intensity was quenched significantly when the concentrations of HVA and VMA were relatively higher. The mechanism of self-quenching processes involved in the Ru(bpy)(3)(2+)-HVA and -VMA ECL systems are proposed in this study.  相似文献   

6.
Three different direct HPLC methods for the determination of 3-methoxy-4-hydroxymandelic acid (VMA, vanillylmandelic acid), 5-hydroxyindoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylacetic acid (HVA, homovanillic acid) in urine were compared: two spectrofluorometric methods, applying discontinuous gradients, and one serial coulometric linear gradient method. The imprecision study (n = 6) revealed comparable coefficients of variation (CV), intra-assay ranging 1.4-11.1%, and inter-assay ranging 5.9-11.8% for physiological and moderately elevated levels of VMA, 5-HIAA and HVA. All methods showed good linearities up to 100 mumol/L for each of the three compounds studied. Analytical recoveries were 97-114% for VMA, 87-103% for 5-HIAA, and 80-95% for HVA. Recoveries were not dependent on urinary relative densities in the range 1.010-1.030 kg/L or on protein content (prior to acidification) in the range 0.1-3 g/L, or on the pH of conservation in the range 2-5 or on storage temperature in the range -20 - +22 degrees C for three weeks. The distributed-sample comparison revealed acceptable correlations and clinically unimportant accuracy differences between the methods. It is concluded that direct fluorometric and electrochemical HPLC methods can be used in the determination of major catecholamine and serotonin metabolites in human urine for clinical diagnosis and follow-up of neural crest and carcinoid tumours.  相似文献   

7.
A method of separation and determination of homovanillic acid (HVA) and vanillylmandelic acid (VMA) was developed based on capillary zone electrophoresis/amperometric detection with high sensitivity, good resolution and selectivity. In order to achieve complete separation and good response, several factors including pH, buffer concentration, separation voltage, detection potential and the length of separation capillary, were studied in detail. The method has been used to determine both HVA and VMA in human urine. Uric acid (UA) in human urine did not interference with their determination. The limit of detection of the method was 1.3×10−6 mol/l (1.4 fmol) for HVA and 7.9×10−7 mol/l (0.87 fmol) for VMA at a signal-to-noise ratio of 3.  相似文献   

8.
A newly developed method for the simultaneous extraction and quantitation of the unconjugated levels of the catecholamine metabolites vanilmandelic acid (VMA), 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and homovanillic acid (HVA) in plasma by high performance liquid chromatography with electrochemical detection was modified and applied to studies of human saliva. The assay had a mean coefficient of variation under 3% for each of the metabolites. Levels of plasma VMA, MHPG and HVA were measured in 28 normal subjects and compared to their saliva levels, obtained before and after stimulation by mastication. Significant correlations were found between plasma and saliva MHPG and HVA, but there was no correlation between plasma and saliva VMA. Salivary MHPG and HVA can be reproducibly assayed and may be useful tools for indications of changes in central and peripheral catecholamine metabolism.  相似文献   

9.
The excretion of neurotransmitter metabolites in normal individuals is of great significance for health monitoring. A rapid quantitative method was developed with ultra-performance liquid chromatography–tandem mass spectrometry. The method was further applied to determine catecholamine metabolites vanilymandelic acid (VMA), methoxy hydroxyphenyl glycol (MHPG), dihydroxy-phenyl acetic acid (DOPAC), and homovanillic acid (HVA) in the urine. The urine was collected from six healthy volunteers (20–22 years old) for 10 consecutive days. It was precolumn derivatized with dansyl chloride. Subsequently, the sample was analyzed using triple quadrupole mass spectrometry with an electrospray ion in positive and multireaction monitoring modes. The method was sensitive and repeatable with the recoveries 92.7–104.30%, limits of detection (LODs) 0.01–0.05 μg/mL, and coefficients no less than 0.9938. The excretion content of four target compounds in random urine samples was 0.20 ± 0.086 μg/mL (MHPG), 1.27 ± 1.24 μg/mL (VMA), 3.29 ± 1.36 μg/mL (HVA), and 1.13 ± 1.07 μg/mL (DOPAC). In the urine, the content of VMA, the metabolite of norepinephrine and adrenaline, was more than MHPG, and the content of HVA, the metabolite of dopamine, was more than DOPAC. This paper detected the levels of catecholamine metabolites and summarized the characteristics of excretion using random urine samples, which could provide valuable information for clinical practice.  相似文献   

10.
Homovanillic acid (HVA) and vanillylmandelic acid (VMA) are end-stage metabolites of catecholamine and are clinical biomarkers for the diagnosis of neuroblastoma. For the first time in Korea, we implemented and validated a liquid chromatography tandem mass spectrometry (LC–MS/MS) assay to measure urinary concentrations of HVA and VMA according to Clinical and Laboratory Standards Institute guidelines. Our LC–MS/MS assay with minimal sample preparation was validated for linearity, lower limit of detection (LOD), lower limit of quantification (LLOQ), precision, accuracy, extraction recovery, carryover, matrix effect, and method comparison. A total of 1209 measurements was performed to measure HVA and VMA in spot urine between October 2019 and September 2020. The relationship between the two urinary markers, HVA and VMA, was analyzed and exhibited high agreement (89.1% agreement, kappa’s k = 0.6) and a strong correlation (Pearson’s r = 0.73). To our knowledge, this is the first study to utilize LC–MS/MS for simultaneous quantitation of spot urinary HVA and VMA and analyze the clinical application of both markers on a large scale for neuroblastoma patients.  相似文献   

11.
A sensitive and easy analytical method for catecholamine metabolites including 4-hydroxy-3-methoxyphenylglycol sulfate (HMPG sulfate), vanillylmandelic acid (VMA) and homovanillic acid (HVA) determination was developed based on liquid chromatography-tandem mass spectrometry in a negative multiple reaction monitoring mode. The analytes were rapidly separated on a reversed-phase Waters Xbridge C18 column (150 × 2.1 mm i.d.) with the mobile phase of 15% (v/v) acetonitrile containing 2 mM ammonium formate and 85% (v/v) formic acid solution (0.05%, v/v). Mass spectrometric conditions, such as characteristic fragmentations and quantification ion transitions, both with chromatographic conditions including separation column type and mobile phase composition, were systematically investigated to get optimal sensitivity and specificity. The limits of detection were in the range of 0.03-0.7 ng/mL for the targets. Recovery rates of spiked urine samples with three different concentration levels (low, middle and high) were above 86% with precisions less than 5.7%. For serum analysis, acetonitrile chosen both as protein precipitation reagent and extraction solvent facilitates to reduce matrix effects. Recovery rates of spiked serum sample were in the range of 90.6% to 111.1% for three targets. The intra-day and inter-day precisions were satisfactory less than 8.7%. This proposed method was successfully applied to determine HMPG sulfate, HVA and VMA present in human urine and serum.  相似文献   

12.
Vanillylmandelic acid (VMA) and homovanillic acid (HVA) are clinical biomarkers for diagnosis of neuroblastoma (NB), which commonly occurs in the childhood. Development and application of a robust LC–MS/MS method for fast determination of these biomarkers for optimal laboratory testing of NB is essential in clinical laboratories. In present study, we developed and validated a simple liquid chromatography tandem mass spectrometry (LC–MS/MS) method for quick clinical testing of VMA and HVA for diagnosis of NB. The method was validated according to the current CLSI C62‐A and FDA guidelines. The age‐adjusted pediatric reference intervals and diagnostic performance were evaluated in both 24 h urine and random urine. Injection‐to‐injection time was 3.5 min. Inter‐ and intra‐assay coefficients of variation (CVs) were ≤3.88%. The lower limit of quantification and the limit of detection were 0.50 and 0.25 μmol/L for both VMA and HVA. Recoveries of VMA and HVA were in the ranges of 85–109% and 86–100% with CVs ≤5.76%. This method was free from significant matrix effect, carryover and interference. The establishment of age‐adjusted pediatric reference intervals by this LC–MS/MS method was favorable for the improvement in diagnostic performance, which was crucial for correct interpretation of test results from children in both 24 h and random urine.  相似文献   

13.
An improved protocol has been developed to isolate homovanillic acid (HVA) and vanilmandelic acid (VMA) from urine with strong anion-exchange resin. The sample is diluted with acetate buffer and passed through a disposable column. HVA, uric acid, and many hydrophobic organic acids are removed with 1.0 M acetic acid--ethanol. Then VMA is eluted with 0.5 M phosphoric acid. Two isocratic mobile phases allow rapid high-performance liquid chromatographic measurement of VMA (5 min) and HVA (8 mins) on a 5-micron ODS column. Selective conditions were developed with dual-electrode coulometric detection to permit specific measurement of VMA, HVA, and internal standards, with less than 5% between-run variation.  相似文献   

14.
A comparative study about advantages and limitations of net analyte signal (NAS)-based methods (NBMs) and partial least squares (PLS) calibration in kinetic analysis has been performed. The different multivariate calibration methods were applied to the determination of binary mixtures of amoxycillin and clavulanic acid, by stopped-flow kinetic analysis. The reactions of oxidation of these compounds with cerium(IV), in sulphuric acid medium, were monitored by following the changes on the fluorescence of the oxidation products, in stopped-flow mode. The differences on the kinetic profiles obtained at λex=256 nm and λem=351 nm, were used to determine mixtures of both compounds by multivariate calibration of the kinetic data, using PLS-1, a modification of hybrid linear analysis (HLA) and net analyte pre-processing combined with classical least squares (NAP/CLS) methods. The NBMs allowed the selection of optimal time data regions by calculating the minimum error indicator function (EIF), improving the results and making NBMs very convenient for the analysis. In addition, the use of the net analyte signal concept allows the calculation of the analytical figures of merit, limit of detection (LOD), sensitivity and selectivity, for each component.  相似文献   

15.
Resolution of binary mixtures of vitamin B12, methylcobalamin and B12 coenzyme with minimum sample pre-treatment and without analyte separation has been successfully achieved by methods of partial least squares algorithm with one dependent variable (PLS1), orthogonal signal correction/partial least squares (OSC/PLS), principal component regression (PCR) and hybrid linear analysis (HLA). Data of analysis were obtained from UV-vis spectra. The UV-vis spectra of the vitamin B12, methylcobalamin and B12 coenzyme were recorded in the same spectral conditions. The method of central composite design was used in the ranges of 10-80mgL(-1) for vitamin B12 and methylcobalamin and 20-130mgL(-1) for B12 coenzyme. The models refinement procedure and validation were performed by cross-validation. The minimum root mean square error of prediction (RMSEP) was 2.26mgL(-1) for vitamin B12 with PLS1, 1.33mgL(-1) for methylcobalamin with OSC/PLS and 3.24mgL(-1) for B12 coenzyme with HLA techniques. Figures of merit such as selectivity, sensitivity, analytical sensitivity and LOD were determined for three compounds. The procedure was successfully applied to simultaneous determination of three compounds in synthetic mixtures and in a pharmaceutical formulation.  相似文献   

16.
The net analyte signal (NAS)-based method HLA/GO, modification of the original hybrid linear analysis (HLA) method, has been used to determine carbendazim, fuberidazole and thiabendazole in water samples. This approach was used after a solid-phase extraction (SPE) step, using the native fluorescence emission spectra of real samples, previously standardized by piecewise direct standardization (PDS). The results obtained show that the modification of HLA performs in a similar way that partial least-squares method (PLS-1). The NAS concept was also used to calculate multivariate analytical figures of merit such as limit of detection, selectivity, sensitivity and analytical sensitivity (γ−1). With this purpose, blanks of methanol and ternary mixtures, with the target analyte at low concentration and the other two ranging according to the calibration matrix, were used, with different results. Detection limits calculated in the last way are more realistic and show the influence of the other components in the sample. Selectivity for carbendazim is higher than the corresponding values for fuberidazole and thiabendazole, whereas sensitivity, as well as the values obtained for their detection limits, are lower for carbendazim, followed by thiabendazole and fuberidazole. Results obtained by modification of HLA vary in the same way that the ones obtained by PLS-1.  相似文献   

17.
A rapid and simple reversed-phase high-performance liquid chromatographic procedure for the determination of vanillylmandelic acid (VMA) is described. This method was applied in the determination of the VMA content in urine from normal subjects and patients with neural crest lesions. Sample preparation is minimal and the analysis is short (20 min) and reproducible. The sensitivity of the UV detection is in the ng range. By this technique, fourteen adult control subjects were found to excrete a mean of 2.86 microgram VMA per mg creatinine, whereas twelve patients with pheochromocytoma excreted a mean of 15.7 microgram VMA per mg creatinine.  相似文献   

18.
Flow injection analysis with amperometric detection (FIA‐AD) at screen‐printed carbon electrodes (SPCEs) in optimum medium of Britton‐Robinson buffer (0.04 mol ? L?1, pH 2.0) was used for the determination of three tumor biomarkers (homovanillic acid (HVA), vanillylmandelic acid (VMA), and 5‐hydroxyindole‐3‐acetic acid (5‐HIAA)). Dependences of the peak current on the concentration of biomarkers were linear in the whole tested concentration range from 0.05 to 100 μmol ? L?1, with limits of detection (LODs) of 0.065 μmol ? L?1 for HVA, 0.053 μmol ? L?1 for VMA, and 0.033 μmol ? L?1 for 5‐HIAA (calculated from peak heights), and 0.024 μmol ? L?1 for HVA, 0.020 μmol ? L?1 for VMA, and 0.012 μmol ? L?1 for 5‐HIAA (calculated from peak areas), respectively.  相似文献   

19.
A procedure is described for separating vanillylmandelic acid (VMA) and homovanillic acid (HVA) from urine so that they can be assayed by chemical means or gas chromatography. The process comprises passing a threefold diluted urine over cation exchange column (AG 50W-X12) to remove catecol amines and amino acids. The VMA and HVA is then adsorbed from the diluted urine to an anion exchange column (AG 2-X8). After washing with water, the HVA and VMA are eluted with an NaCl-K2CO3 solution. The VMA can be determined by oxidation to vanillin directly. By extraction with n-pentanone-2, after acidification and evaporation to dryness, the residue may be redissolved for processing or treated with a methylating reagent for gas chromatography. For the latter purpose, 4-methoxy benzophenone is recommended as the internal standard.  相似文献   

20.
A method for determining serum catecholamine metabolites such as vanillylmandelic acid (VMA), 3-methoxy-4-hydroxyphenyl glycol (MHPG) and homovanillic acid (HVA) in neuroblastoma by using high performance liquid chromatography and electrochemical detector is described. The separation of catecholamine metabolites was performed on a reverse phase column with an eluting system containing citric acid-potassium hydrogen phosphate buffer and methanol as the organic modifier. The experimental results showed that VMA and HVA levels in the serum of neuroblastoma patients were 15-30 times higher than that of the normal control group. The same phenomenon also occurred in patients with stage II neuroblastoma. Serum VMA, MHPG and HVA levels reduced to normal in patients suffering from neuroblastoma after surgery. Serum catecholamine metabolites analysed by using HPLC/ECD is more simple, sensitive and reliable than that by usual urine assay and might be used for the diagnosis of neuroblastoma even in early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号