首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了溶剂分别为 THF, H2O/THF, CH3CN/THF以及ROH/THF (R=Me, Et, iso-Pr, tert-Bu)条件下TpRuH(PPh3)- (CH3CN) [Tp=hydrotris(pyrazolyl)borate]催化氢化苯乙烯生成乙基苯的反应, 发现向干燥THF体系中添加微量 H2O, CH3CN或ROH对催化反应都具有显著的促进作用. 催化机理研究表明, 小分子添加物首先取代TpRuH(PPh3)(CH3CN)中的PPh3配体形成中间体TpRuH(CH3CN)L (L=H2O, CH3CN或ROH), 降低空间位阻, CH3CN配体随后被苯乙烯取代生成中间体 TpRuH(H2C=CHPh)L; η2-苯乙烯插入Ru—H键后形成的Ru-烷基中间物与H2反应生成η2-H2配合物 TpRu(CH2CH2Ph)(H2)L或TpRu[CH(CH3)Ph](H2)L, 进而发生σ-复分解反应生成乙基苯完成催化循环.  相似文献   

2.
The gas phase reaction of Cu plasma and acetonitrile clusters is studied by the laser ablation-molecular beam(LAMB) method. Four series of clustered complex ions Cu+(CH3CN)n, CH2CN+(CH3CN)n,H+(CH3CN)n and CH3CHCN+(CH3CN)n are observed. Interestingly,the species and sizes of the product clusters vary observably when the plasma acts on the different parts of the pulsed acetonitrile molecular beam. When the laser ablated Cu plasma acts on the head of the beam,the metal acetonitrile complex clusters Cu+(CH3CN)n together with protonated acetonitrile clusters H+(CH3CN)n and deprotonated acetonitrile clusters CH2CN+ (CH3CN)n are domain,while the plasma acts on the middle of the beam. However,CH2CN+(CH3CN)n and H+(CH3CN)n along with the clusters CH3CHCN+(CH3CN)n turn out to be the main resulting clusters. By comparing the intensities and the cluster sizes of CH3CHCN+(CH3CN)n with H+(CH3CN)n and CH2CN+(CH3CN)n,the formation of CH3CHCN +(CH3CN)n is contributed to the intracluster ion-molecule reaction of acetonitrile clusters.  相似文献   

3.
Cobalt complexes supported by diglyoxime ligands of the type Co(dmgBF2)2(CH3CN)2 and Co(dpgBF2)2(CH3CN)2 (where dmgBF2 is difluoroboryl-dimethylglyoxime and dpgBF2 is difluoroboryl-diphenylglyoxime), as well as cobalt complexes with [14]-tetraene-N4 (Tim) ligands of the type [Co(TimR)X2]n+ (R=methyl or phenyl, X=Br or CH3CN; n=1 with X=Br and n=3 with X=CH3CN), have been observed to evolve H2 electrocatalytically at potentials between -0.55 V and -0.20 V vs SCE in CH3CN. The complexes with more positive Co(II/I) redox potentials exhibited lower activity for H2 production. For the complexes Co(dmgBF2)2(CH3CN)2, Co(dpgBF2)2(CH3CN)2, [Co(TimMe)Br2]Br, and [Co(TimMe)(CH3CN)2](BPh4)3, bulk electrolysis confirmed the catalytic nature of the process, with turnover numbers in excess of 5 and essentially quantitative faradaic yields for H2 production. In contrast, the complexes [Co(TimPh/Me)Br2]Br and [Co(TimPh/Me)(CH3CN)2](BPh4)3 were less stable, and bulk electrolysis only produced faradaic yields for H2 production of 20-25%. Cyclic voltammetry of Co(dmgBF2)2(CH3CN)2, [Co(TimMe)Br2]+, and [Co(TimMe)(CH3CN)2]3+ in the presence of acid revealed redox waves consistent with the Co(III)-H/Co(II)-H couple, suggesting the presence of Co(III) hydride intermediates in the catalytic system. The potentials at which these Co complexes catalyzed H2 evolution were close to the reported thermodynamic potentials for the production of H2 from protons in CH3CN, with the smallest overpotential being 40 mV for Co(dmgBF2)2(CH3CN)2 determined by electrochemistry. Consistent with this small overpotential, Co(dmgBF2)2(CH3CN)2 was also able to oxidize H2 in the presence of a suitable conjugate base. Digital simulations of the electrochemical data were used to study the mechanism of H2 evolution catalysis, and these studies are discussed.  相似文献   

4.
Franck-Condon one-electron oxidation of the stable anions -CH2CN, CH3-CHCN and -CH2CH2CN (in the collision cell of a reverse-sector mass spectrometer) produce the radicals .CH2CN, CH3.CHCN and .CH2CH2CN, which neither rearrange nor decompose during the microsecond duration of the neutralisation-reionisation experiment. Acetonitrile (CH3CN) and propionitrile (CH3CH2CN) are known interstellar molecules and radical abstraction of these could produce energised .CH2CN and CH3.CHCN, which might react with NH2. (a known interstellar radical) on interstellar dust or ice surfaces to form NH2CH2CN and NH2CH(CH3)CN, precursors of the amino acids glycine and alanine.  相似文献   

5.
自由基CN、CH、H在燃烧化学、大气化学、天体发光、环境污染等方面占有极为重要的地位,对于这些自由基发光及形成动力学机理的探讨,无疑是重要的.近年来,人们利用亚稳态惰性原子与膨化物碰撞传能,探讨了CN(AB-+X)的化学发光[‘一、发现亚稳态的Ar(‘几,。)原子与H  相似文献   

6.
The diamagnetic complex [Re(CN)8]3- is shown to react with Mn2+ ions in methanol to generate the centered, face-capped octahedral cluster (CH3OH)24Mn9Re6(CN)48, which is structurally analogous to (CH3OH)24Mn9Mo6(CN)48. Related reactions involving stoichiometric mixtures of octacyanometalate complexes generate the substituted species (CH3OH)24Mn9Mo5Re(CN)48, (CH3OH)24Co9Mo5Re(CN)48, (CH3OH)24Mn9Mo3Re3(CN)48, (CH3OH)24Mn9W5Re(CN)48 and (CH3OH)24Co9W5Re(CN)48, in which the O(h) symmetry of the cluster core is broken. Reassessment of the magnetic properties of the Mn9Mo6(CN)48 cluster confirm that it possesses a ground state spin of S = 39/2, but does not exhibit single-molecule-magnet behavior. Lowering the symmetry of the molecule by substitutions of ReV at one or three of the MoV sites does not lead to an overall increase in the magnetic anisotropy, as probed by ac magnetic susceptibility measurements. A similar result occurs for the other substituted species, with the important exception of the new single-molecule magnet (CH3OH)24Co9W5Re(CN)48, for which the spin reversal barrier is significantly reduced relative to that observed previously in (CH3OH)24Co9W6(CN)48.  相似文献   

7.
A triazole-containing 8-hydroxyquinoline (8-HQ) ether 2 was efficiently synthesized in two steps from the "click" strategy. Compound 2 gave a strong fluorescence (Φ = 0.21) in nonprotic solvent like CH(3)CN, and a weak fluorescence (Φ = 0.06) in protic solvent like water. In water, a more than 100 nm red shift of the fluorescence maximum was observed for compound 2 in comparison with that in CH(3)CN. This fluorescence difference may be attributed to the intermolecular photoinduced proton transfer (PPT) process involving the protic solvent water molecules. Similarly, this intermolecular PPT process was also observed in the high-water-content CH(3)CN aqueous solution (e.g., CH(3)CN/H(2)O = 5/95, v/v). The water content in the CH(3)CN/H(2)O binary solvent mixture greatly affected the fluorescence intensity (e.g., Φ = 0.06 and 0.25 when CH(3)CN/H(2)O = 5/95 and 95/5, v/v, respectively) and emission wavelength. Using this interesting property, by simple variation of the water content in the CH(3)CN aqueous solution, compound 2 was tuned from a selective "turn-on" fluorescent sensor for Zn(2+) (CH(3)CN/H(2)O = 5/95, v/v) to a ratiometric one for Zn(2+) and a selective "turn-off" one for Fe(3+) (CH(3)CN/H(2)O = 95/5, v/v) over a wide range of pH value. In high-water-content (CH(3)CN/H(2)O = 5/95, v/v) aqueous solution compound 2 shows a selective "turn-on" response toward Zn(2+), with a 10-fold enhancement in the fluorescence intensity at 428 nm and a 62 nm blue shift of the emission maximum (490 to 428 nm) due to the inhibition of intermolecular PPT process upon chelating with Zn(2+). However, in a less polar solvent (CH(3)CN/H(2)O = 95/5, v/v) in which compound 2 has high fluorescence (quantum yield =0.25), it shows a ratiometric response toward Zn(2+), with a continuous decrease of the fluorescence intensity at 399 nm and an increase at 423 nm. More interestingly, in this case, it also exhibits a very sensitive, selective, and ratiometric fluorescence quenching in the presence of Fe(3+), with an 81 nm red shift of the emission maximum (399 to 480 nm) in a wide range of pH through a metal ligand charge transfer (MLCT) effect.  相似文献   

8.
The ion-molecule reaction, CH(3)CN(+) + CH(3)CN → CH(3)CNH(+) + CH(2)CN, has been investigated using the threshold electron-secondary ion coincidence (TESICO) technique. Relative reaction cross sections for two microscopic reaction mechanisms, i.e., proton transfer (PT) from the acetonitrile ion CH(3)CN(+) to neutral acetonitrile CH(3)CN and hydrogen atom abstraction (HA) by CH(3)CN(+) from CH(3)CN, have been determined for two low-lying electronic states, (2)E and (2)A(1) of the CH(3)CN(+) primary ion. The cross section for PT of the (2)A(1) state was smaller than that of the (2)E state, whereas that of HA are almost the same in the two states. Ab initio calculations showed that the dissociation of the C-H(+) bond of CH(3)CN(+) is easier in the (2)E state than that in the (2)A(1) state. The direct ab initio molecular dynamics (MD) calculations showed that two mechanisms, direct proton transfer and complex formation, contribute the reaction dynamics.  相似文献   

9.
We previously showed that [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) binds to dsDNA only upon irradiation with visible light and that photolysis results in a 34-fold enhancement of its cytotoxicity toward Hs-27 human skin fibroblasts, making it potentially useful for photodynamic therapy (PDT). With the goal of gaining further insight on the photoinduced binding of DNA to the complex, we investigated by NMR spectroscopy the mechanism by which 2,2'-bipyridine (bpy), a model for biologically relevant bidentate nitrogen donor ligands, binds to [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) upon irradiation in D(2)O. The photochemical results are compared to the reactivity in the dark in D(2)O and CD(3)CN. The photolysis of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) with equimolar bpy solutions in D(2)O with visible light affords [Rh(2)(O(2)CCH(3))(2)(eq/eq-bpy)(CH(3)CN)(2)(D(2)O(ax))(2)](2+) (eq/eq) with the reaction reaching completion in ~8 h. Only vestiges of eq/eq are observed at the same time in the dark, however, and the reaction is ~20 times slower. Conversely, the dark reaction of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+) with an equimolar amount of bpy in CD(3)CN affords [Rh(2)(O(2)CCH(3))(2)(η(1)-bpy(ax))(CH(3)CN)(5)](2+) (η(1)-bpy(ax)), which remains present even after 5 days of reaction. The photolysis results in D(2)O are consistent with the exchange of one equiv CH(3)CNeq for solvent, and the resulting species quickly reacting with bpy to generate eq/eq; the initial eq ligand dissociation is assisted by absorption of a photon, thus greatly enhancing the reaction rate. The photolytic reaction of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+):bpy in a 1:2 ratio in D(2)O affords the eq/eq and (eq/eq)(2) adducts. The observed differences in the reactivity in D(2)O vs CD(3)CN are explained by the relative ease of substitution of eq D(2)O vs CD(3)CN by the incoming bpy molecule. These results clearly highlight the importance of dissociation of an eq CH(3)CN molecule from the dirhodium core to attain high reactivity and underscore the importance of light for the reactivity of these compounds, which is essential for PDT agents.  相似文献   

10.
The intermolecular photoinduced electron transfer (PET) processes of 1,8-naphthalimide (NI) derivatives including NI-linker-phenothiazine dyads were investigated in a protic H(2)O/CH(3)CN (v/v=1:1) solvent using ns-laser flash photolysis with 355 nm-laser excitation. NI derivatives are surrounded by H(2)O in the ground state in H(2)O/CH(3)CN. The T(1)-T(n) absorption band of (3)NI* was observed at around 470 nm. The transient absorption band at around 410 nm increased concomitantly with the decay of (3)NI* in H(2)O/CH(3)CN. This implies that hydrated NI anion radical (NI*(-)) is primarily generated via the quenching of (3)NI* by NI at the diffusion control rate. This intermolecular PET did not occur in aprotic CH(3)CN. The formation and decay times of NI*(-) showed strong dependence on the concentration of NI. Then, we suggest that NI*(-) could undergo proton abstraction to give ketyl radical species of NI [NI(H)*] in H(2)O/CH(3)CN.  相似文献   

11.
The photophysical properties of bis-1,8-naphthalimide (NI-L-NI) dyads with different linkers ( L = -C 3H 6-, -C 4H 8-, -C 6H 12-, -C 8H 16-, and -C 9H 18-) as well as the reference NI derivative (NI-C 7H 15) were investigated in CH 3CN and H 2O/CH 3CN (v/v = 1:9). The normal fluorescence peak of (1)NI*-L-NI was observed at 379 nm together with a broad emission at longer wavelength both in aprotic CH 3CN and in H 2O/CH 3CN, which is assigned to an excimer, (1)(NI-L-NI)*. The excimer emission maximum was blue-shifted with increasing length of the linker. The photoinduced electron-transfer process of NI-L-NI was also investigated in both solvents by using nanosecond-laser flash photolysis. The T 1-T n absorption band for (3)NI*-L-NI was observed around 470 nm in both solvents. In H 2O/CH 3CN, NI-L-NI is solvated with H 2O in the ground state to exist as solvated NI-L-NI. In the excited triplet state, the NI radical anion (NI (*-)) was generated via the intramolecular quenching of (3)NI*-L-NI by another NI moiety. The solvated NI (*-)-L-NI may undergo the proton abstraction process to give NI(H) (*)-L-NI, which can be confirmed by the transient absorption band at 410 nm. This band was not observed in pure aprotic CH 3CN.  相似文献   

12.
The electrochemistry and electrogenerated chemiluminescence (ECL) of two linear, stereoregular, and structurally defined PPV derivatives, poly[distyrylbenzene-b-(ethylene oxide)]s, with respective 12 and 16 of ethylene oxide repeat units in the backbone, abbreviated as DE-1 and DE-2, have been studied on glassy carbon and Pt electrodes in CH2Cl2 and CH3CN containing 0.10 M tetra-n-butylammonium perchlorate (TBAP). In CH2Cl2, a one-electron transfer, reversible oxidation at approximately 0.75 V vs Ag/Ag+ (10 mM AgNO3 in CH3CN) was observed for both polymers. Porous polymer films were electrochemically formed on the electrode with multiple cyclic potential scanning. Cast films of DE-1 and DE-2 on the electrode prepared from 1.0 mM of the corresponding CH2Cl2 solutions were used for studies in CH3CN containing 0.10 M TBAP due to their limited solubility in the solvent. A film-type of oxidation was found at approximately 0.80 V vs Ag/Ag+ in CH3CN when a scan rate of less than 1 V/s was used. The soluble oxidation product can be captured and reduced and then reoxidized in solution-phase at the electrode at a relatively high scan rate of, e.g., 2 V/s. ECL responses with a maximum emission at approximately 1.10 V vs Ag/Ag+ were obtained with the cast films in CH3CN (0.10 M TBAP) in the presence of 43 mM tri-n-propylamine (TPrA) after both TPrA and film were oxidized. The ECL is believed to be resulted from the interaction between the oxidized polymer species and the strong reducing TPrA free radical (TPrA*) generated after the deprotonation of TPrA*+ cation species.  相似文献   

13.
Microcanonical variational transition-state theory was used to determine the entropies of activation for hydrogen-bond cleavage reactions leading to CH(3)CN + ROH(2)(+) in a series of acetonitrile-alcohol proton-bound pairs (CH(3)CN)(ROH)H(+) (where R = CH(3), CH(3)CH(2), CH(3)CH(2)CH(2), and (CH(3))(2)CH). In each case, the dissociation potential surface was modelled at the MP2/6-31 + G(d) level of theory. The dissociating configurations having the minimum sums-of-states were identified in each case and the resulting entropies of activation were calculated. Combined with previous work on the competing reaction leading to CH(3)CNH(+) + ROH, the results permitted the determination of the Delta(DeltaS) in each proton-bound pair. For the (CH(3)CN)(CH(3)OH)H(+) and (CH(3)CN)(CH(3)CH(2)OH)H(+) proton-bound pairs, the entropies of activation for the two dissociating channels are essentially the same [i.e., Delta(DeltaS) = 0], while Delta(DeltaS) for the propanol-containing pairs ranged between 40 and 45 J K(-1) mol(-1). The latter non-zero values are due to a combination of the location of the dividing surface in each dissociation and the rapidity with the frequencies of the vanishing vibrational modes go to zero as they are converted to product translations and rotations during the dissociation.  相似文献   

14.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

15.
在CBS-QB3水平上研究了CH3CN 和·OH反应的势能面, 其中包括两个中间体和9个反应过渡态. 分别给出了各主要物质的稳定构型、相对能量及各反应路径的能垒. 根据计算的CBS-QB3势能面, 探讨了CH3CN+·OH反应机理. 计算结果表明, 生成产物P1(·CH2CN+H2O)的反应路径在整个反应体系中占主要地位. 运用过渡态理论对产物通道P1(·CH2CN+H2O)的速率常数k1(cm3·molecule-1·s-1)进行了计算. 预测了k1(cm3·molecule-1·s-1)在250-3000 K温度范围内的速率常数表达式为k1(250-3000 K)=2.06×10-20T3.045exp(-780.00/T). 通过与已有的实验值进行对比得出, 在实验所测定的250-320 K 范围内, 计算得到的k1的数值与已有的实验值比较吻合. 由初始反应物生成产物P1 (·CH2CN+H2O)只需要克服一个14.2 kJ·mol-1的能垒. 而产物·CH2CN+H2O生成后要重新回到初始反应物CH3CN+·OH, 则需要克服一个高达111.2 kJ·mol-1的能垒,这就表明一旦产物P1生成后就很难再回到初始反应物.  相似文献   

16.
The study of intermolecular collisions and bonding interactions in solutions is of critical importance in understanding and predicting solute/solvent properties. Previous work has established that stable paramagnetic nitroxide molecules are excellent probes of intermolecular interactions for hydrogen bonding in polar solvents. In this study, 1H, 2H, 13C, 15N NMR and liquid/liquid intermolecular transfer dynamic nuclear polarization (L2IT DNP) results are obtained for the paramagnetic probe molecule, TEMPO, interacting with the common aprotic and protic polar solvents, CH3CN and CH3CONH2, yielding a profile of both dipolar and scalar interactions. A significant scalar contact hyperfine is observed for the N-O...H-C interaction (13CH3 hyperfine, a/h=0.66 MHz) in the CH3CN/TEMPO system, whereas the N-O...H-C and N-O...H-N interactions for the TEMPO/CH3CONH2 system yield 13CH3 and 15N hyperfine couplings of a/h=0.16 and -0.50 MHz, respectively. The distance and attitude of the scalar interaction for the nitroxide hydrogen bonding at the methyl group in CH3CN and the amino group in CH3CONH2 are computed using density functional theory (DFT), yielding good agreement with the experimental results. These results show that the hyperfine coupling provides a sensitive probe of weak hydrogen-bonding interactions in solution.  相似文献   

17.
Collins MJ  Ray K  Que L 《Inorganic chemistry》2006,45(20):8009-8011
The complex [Fe(IV)O(N4Py)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) has been prepared by bulk electrolysis in aqueous CH3CN and CH2Cl2, and its redox properties characterized. Bulk chronocoulometry and spectropotentiometry experiments in CH3CN show that [Fe(II)(N4Py)(NCCH3)]2+ can be oxidized quantitatively to its iron(III) derivative at an applied potential of +0.71 V vs ferrocene and then to the oxoiron(IV) complex (in the presence of added water) at potentials above +1.3 V. The E1/2 value for the Fe(IV/III) couple has been estimated to be +0.90 V from spectropotentiometric titrations in CH3CN and cyclic voltammetric measurements in CH2Cl2.  相似文献   

18.
Fully and partially solvated triply-bonded [Re2]4+ complexes have been synthesized and their X-ray structures are described. A fully solvated dirhenium salt with BArf [tetrakis(3,5-bis(trifluoromethyl)phenyl)borate] as the counter anion [Re2(CH3CN)10][BArf]4 () has been characterized. The solubility of the complex in CH2Cl2 and THF in addition to CH3CN offers the possibility of improved reactivity. The structure of [Re2(micro-O)(CH3CN)10][BF4]4 () that possesses a linear [Re(III)-O-Re(III)]4+ unit is reported. Protonation reactions of cis-Re2Cl2(dppm)2(O2CCH3)2 and trans-Re2Cl4(dppm)2 with HBF4.Et2O in acetonitrile afforded cis and trans [Re2(dppm)2(CH3CN)6][BF4]4 ( and ), respectively. Prolonging the reaction time, however, does not lead to fully solvated complex [Re2(CH3CN)10][BF4]4. The neutral nitrogen donor ligands pynp (2-(2-pyridyl)-1,8-naphthyridine) and tznp (2-(2-thiazolyl)-1,8-naphthyridine) react readily with [Re2(CH3CN)10][BF4]4 to provide trans-[Re2(pynp)2(CH3CN)4][BF4]4 and trans-[Re2(tznp)2(CH3CN)4][BF4]4. The X-ray structures trans-[Re2(pynp)2(CH3CN)4][BF4]4 () and trans-[Re2(tznp)2(CH3CN)4][BF4]3[PF6] () have been determined.  相似文献   

19.
A new direct electrophilic diamination reaction of alpha,beta-unsaturated ketones and esters has been established without the use of any metal catalysts. Three types of nitriles (CH(3)CN, CH(3)CH(2)CN, and CH(3)CH(2)CH(2)CN) were employed as nucleophilic nitrogen sources. A new mechanism has also been proposed to explain the resulting regio- and stereoselectivity.  相似文献   

20.
Gas-phase reactions of three typical carbanions CH(2)NO(2)(-), CH(2)CN(-), and CH(2)S(O)CH(3)(-) with the chloromethanes CH(2)Cl(2), CHCl(3), and CCl(4), examined by tandem mass spectrometry, show a novel hydrogen/chlorine exchange reaction. For example, reaction between the nitromethyl anion CH(2)NO(2)(-) and carbon tetrachloride CCl(4) forms the ion CHClNO(2)(-). The suggested reaction mechanism involves nucleophilic attack by CH(2)NO(2)(-) at the chlorine of CCl(4) followed by proton transfer within the resulting complex [CH(2)ClNO(2) + CCl(3)(-)] to form CHClNO(2)(-) and CHCl(3). Two other carbanions CH(2)CN(-) and CH(2)S(O)CH(3)(-) also undergo the novel hydrogen/chlorine exchange reactions with CCl(4) but to a much smaller extent, their higher nucleophilicities favoring competitive nucleophilic attack reactions. Proton abstraction is the exclusive pathway in the reactions of these carbanions with CHCl(3). While CH(2)CN(-) and CH(2)S(O)CH(3)(-) promote mainly proton abstraction and nucleophilic displacement in reactions with CH(2)Cl(2), CH(2)NO(2)(-) does not react.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号