首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The novel carbamide complexes of gadolinium and erbium iodides of the composition LnI34Ur·4H2O (Ln = Gd, Er; Ur = carbamide) were synthesized and studied by X-ray diffraction and IR spectroscopy. The ligands are coordinated to the central Gd or Er atom through the O atoms of water or carbamide molecules. The coordination polylhedron of Ln atoms is a distorted square antiprism. The iodide ions are not coordinated and lie in the outer sphere.  相似文献   

2.
New acetamide complexes of lanthanum, gadolinium, and erbium iodides of the composition LnI3 · 4AA · 4H2 O (Ln = La, Gd, Er; AA = CH3CONH2) are synthesized and studied. The synthesized complexes are characterized by the data of chemical analysis and IR spectroscopy and are studied by X-ray diffraction analysis. The coordination of the ligands (water and acetamide molecules) by the lanthanum, gadolinium, or erbium atom occurs through the oxygen atoms. The coordination polyhedron of the Ln atom is a distorted square antiprism. The iodide ions are not coordinated and exist in the external sphere.  相似文献   

3.
An earlier reported series of the [Ln(Ur)4(H2O)4]I3 (Ln = Y, La, Nd, Eu, Gd, Dy, Ho, Er; Ur = urea) complexes was completed with seven new compounds (Ln = Ce, Pr, Sm, Tb, Tm, Yb, Lu); one of them, [Ce(Ur)4(H2O)4]I3, was studied by X‐ray diffraction. The most striking feature of the [Ln(Ur)4(H2O)4]I3 structures is the presence of two types of coordinated urea molecules. There are two planar symmetric and two non‐planar asymmetric urea molecules. The Ln–O–C bond angles vary in the ranges 163.06–165.71° and 148.42–152.42° for symmetric and asymmetric urea ligands, respectively, correlating with the ionic mode of urea coordination. To elucidate the role of aqua ligands for the urea coordination mode, two water‐free perchlorate complexes, [La(Ur)8](ClO4)3 · 2Ur and [La(Ur)7(OClO3)](ClO4)2 were synthesized and structurally characterized. In these complexes, all urea molecules are planar symmetric; however, both covalent and ionic types of urea coordination with the La–O–C bond angles varying in the 132.4–142.3° and 145.5–159.1° ranges, respectively can be observed.  相似文献   

4.
Data on the synthesis, IR spectroscopy, and single crystal XRD are presented for thiocarbamide compounds of the composition [Ln(H2O)9]I3·2CS(NH2)2, where Ln = Dy (I) and Yb (II). The structural features of [Ln(H2O)9]I3·2CS(NH2)2 (Ln = Pr, Nd, Eu, Gd, Dy, Ho, Er, and Yb) are discussed. The compounds of thiocarbamide with Pr, Nd, Eu, Gd, and Dy iodides are found to form the first isostructural series characterized by a continuous network structure, while with Ho, Er, and Yb iodides the second isostructural series with a layered type structure is formed.  相似文献   

5.
    
Twenty new complexes of chlorides and bromides of yttrium and lanthanides with the Schiff base 4-N-(4′-antipyrylmethylidene)aminoantipyrine (AA) have been prepared and characterised. They have the general formula, [Ln(AA)2Cl3] and [Ln(AA)2Br2]Br where Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Dy, Ho and Er. Molar conductance studies indicate slight dissociation for the chloride complexes and 1:1 electrolytic behaviour for the bromide complexes. The magnetic moments of all the complexes agree well with Van Vleck values. The infrared spectra reveal that AA functions as a terdentate ligand in all these complexes coordinating through the oxygens of both the carbonyl groups and the azomethine nitrogen. Electronic spectra of Nd, Ho and Er for the chloride complexes and that of Pr, Nd, Ho and Er for the bromide complexes show weak covalency in the metal-ligand bond.  相似文献   

6.
单N-乙酸取代O2N2大环配体及其稀土配合物的合成与表征   总被引:2,自引:0,他引:2  
Aseries of new rare earth complexes LnL(NO3)2·2H2O(Ln=La,Pr,Nd,Sm,Eu,Gd,Dy,Yb;L=1,2-diaza-3,4: 9,10-dibenzo-5,8-dioxyacyclopentadecane-N-acetic ion) were prepared. The complexes were characterized by elemental analysis, ICPmethod, IRspectra, 1H NMRand Molar conductance. It was found that the ether oxygen, carboxy oxygen and nitrogen atoms of the ligand are coordinated to the metal ion, as well as a free nitrate and coordianted nitrate ion in the complex.  相似文献   

7.
Sodium plutonium double sulphate monohydrate, NaPu(SO4)2 · H2O and its lanthanide isomorphs NaLn(SO4)2 · H2O (Ln ≡ Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb) were synthesized and characterised by chemical and X-ray diffraction methods. All these compounds belonged to the same structural family where the Pu3+ or Ln3+ ion is coordinated to nine oxygen atoms. The structure of NaPu(SO4)2 · H2O was found in the present work to be isomorphous with NaCe(SO4)2 · H2O reported in the literature. The unit cells of all the lanthanide compounds showed regular contraction with atomic number.  相似文献   

8.
Weinschenkite-type LnPO4·2H2O (Ln is Gd, Tb, Dy, Ho, Y, Er, Tm or Yb) and rhabdophane-type, LnPO4·H2O (Ln is La, Ce, Pr, Nd, Sm, Eu, Gd, Tb or Dy) have been investigated by IR absorption spectroscopy (4000–400 cm−1) and Raman scanning spectroscopy (1400–100 cm−1).The IR spectra of weinschenkite-type LnPO4·2H2O (Ln is Gd→Yb) are characterized by a band at 750±6 cm−1 and the occurrence of a doublet in the region of the HOH bending vibrations, the low-frequency component exceeding the first high-frequency component in intensity. This rather peculiar pattern has already been observed in other compounds of similar chemical composition and is interpreted as arising from the presence of water molecules coordinated to the same metal cation. The Raman and IR spectra of these compounds have been interpreted in a manner based on the known structure of CaSO4·2H2O, which is isostructural with the weinschenkite-type compounds.The Raman and IR spectra of rhabdophane-type LnPO4·H2O is analyzed on the basis of the knowledge of the space group of rare earth orthophosphates rhabdophane-type. Its relation with the spectra of rare earth orthophosphates weinschenkite-type is discussed.  相似文献   

9.
Twelve oxamide-bridged Ln(III)–Cu(II) heteropentanuclear complexes Ln[Cu(PMoxd)]4(ClO4)3 · 5H2O (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and PMoxd = the N,N′-Bi(α-pyridylmethyl)-oxamide dianion) and 12 oxamide-bridged Ln(III)–Cu(II) heteropentanuclear complexes with the formula of Ln[Cu(PEoxd)]4(ClO4)3 · 5H2O (PEoxd = the N,N′-Bi(α-pyridylethyl)-oxamide dianion) were synthesized and characterized. The magnetic properties of Gd[Cu(PMoxd)]4(ClO4)3 · 5H2O (7) and Gd[Cu(PEoxd)]4(ClO4)3 · 2H2O (19) show that there are ferromagnetic interactions between Gd(III) and Cu(II) in the complexes with J Cu–Gd = 1.38 cm?1 and J Cu–Gd = 1.00 cm?1, respectively. Fluorescent quenching phenomena for Eu[Cu(PMoxd)]4(ClO4)3 · 5H2O (6) and Tb[Cu(PMoxd)]4(ClO4)3 · 5H2O (8) were also observed.  相似文献   

10.
Thirteen solid ternary complexes Ln(Pdc)3(Phen) (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu;) have been synthesized in absolute ethanol by rare-earth element chloride low hydrate reacting with the mixed ligands of ammonium pyrrolidinedithiocarbamate (APdc) and 1,10-phenanthroline · H2O (o-Phen · H2O) in the ordinary laboratory atmosphere without any cautions against moisture or air sensitivity. IR spectra of the complexes showed that the Ln3+ ion was coordinated with six sulfur atoms of three Pdc and two nitrogen atoms of o-Phen · H2O. It was assumed that the coordination number of Ln3+ is eight. The constant-volume combustion energies of the complexes, Δc U, were determined by a precise rotate-bomb calorimeter at 298.15 K. Their standard molar enthalpies of combustion, Δc H m o , and standard molar enthalpies of formation, Δf H m o were calculated. The text was submitted by the authors in English.  相似文献   

11.
The synthesis and data of the study of new complexes of erbium and lutetium bromides with carbamide, [Ln(Ur)4(H2O)4]Br3 (I and III) and [Ln(Ur)6(H2O)2]Br3 (II and IV) (Ln = Er and Lu), by IR spectroscopy and X-ray diffraction analysis are presented. For all four compounds, coordination with metal occurs through the oxygen atoms of the water and carbamide molecules. The coordination polyhedra of the Ln atoms are distorted square antiprisms. Coordination of four carbamide molecules does not change their planar structures. The bromide ions are not coordinated, existing in the external sphere. Many hydrogen bonds are observed in the structures of complexes of both types.  相似文献   

12.
Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).  相似文献   

13.
The multi-step dehydration and decomposition of trivalent lanthanum and lanthanide heptanediate polyhydrates were investigated by means of thermal analysis completed with infrared study. Further more, X-ray diffraction data for investigated heptanediate complexes of general stoichiometry Ln2(C7H10O4)3.nH2O (wheren=16 in the case of La, Ce, Pr, Nd and Sm pimelates,n=8 for Eu, Gd, Tb, Dy, Er and Tm pimelates,n=12 for Ho, Yb and Lu pimelates) were also reported.
Zusammenfassung Mittels TG, DTG, DTA wurde in Verbindung mit IR-Methoden der mehrstufige Dehydratations- und der Zersetzungsvorgang der Polyhydrate der PimelinsÄuresalze von dreiwertigem Lanthan und dreiwertigen Lanthanoiden untersucht. Röntgendiffraktionsdaten der untersuchten Heptandiat-Komplexe mit der allgemeinen Formel Ln2(C7H10O4)3 nH2O (mitn=16 für Ln=La, Ce, Pr, Nd und Sm,n=8 für Ln=Eu, Gd, Tb, Dy, Er und Tm sowien=12 für Ln=Ho, Yb und Lu) werden ebenfalls gegeben.
  相似文献   

14.
《Polyhedron》1988,7(1):79-81
The air and moisture stable complexes [Ln{HB(C3N2H3)3}2{MeC(O)CHC(O)Me}] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu, Y), have been prepared and characterized. The molecular structures of the compounds with Ln = Ce and Yb reveal that a substantial distortion of the coordination geometry found for Ce3+ is necessary to allow the ligand set to accommodate the smaller Yb3+ ion.  相似文献   

15.
A new series of complexes of 5,6-benzoquinoline (Benzqn) with lanthanide perchlorates with the general composition Ln(ClO4)3·7Benzqn (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy or Ho) were synthesised and characterised by elemental analysis, conductance, molecular weight and infrared spectra. The thermal behaviour of these complexes have also been studied.  相似文献   

16.
本文报道了稀土与3-乙酰乙酰基-4-羟基香豆素配合物的合成,其化学组成为Ln(Haac)3.nH2O(Ln为La,Pr,Nd,Gd,Dy,Er,n为1或2),基于H-NMR,IR的结果,提出了稀土离子与配位体4位羟基氧与邻近羰基双齿配位结构,对Nd^3+及Er^3+配合物的超灵敏吸收带的形状和吸收强度等也作了讨论。  相似文献   

17.
Two types of isostructural complexes of lanthanide chlorides with diglyme have been synthesized. These are mononuclear molecular complexes [LnCl3(diglyme)(THF)] (Ln = Eu ( 1 ), Gd ( 2 ), Dy ( 3 ), Er ( 4 ), Yb ( 5 ); diglyme = diethylen glycol dimethyl ether) and binuclear molecular complexes [LnCl3(diglyme)]2 (Ln = Dy ( 3d ), Er ( 4d ), Yb ( 5d )). Complex 1 was obtained by the reaction of [EuCl3(DME)2] with diglyme in THF. The complexes 2 – 5 and 3d – 5d resulted from reactions of LnCl3·6H2O, (CH3)3SiCl and diglyme in THF. The mononuclear complexes 2 – 5 crystallized directly from the solutions where the reactions of lanthanide compounds with diglyme took place. Recrystallizations of the powder products of the same reactions from dichloromethane resulted in the binuclear complexes 3d – 5d . Reactions of lanthanide bromide hydrates, (CH3)3SiBr and diglyme in THF achieved mononuclear molecular complexes [LnBr3(diglyme)(L)] (Ln = Gd, L = H2O ( 6 ); Ln = Ho, L = THF ( 7 )). Crystals of 6 and 7 were grown by recrystallization from dichloromethane. The lanthanide atoms (Ln = Eu–Yb) are seven‐coordinated in a distorted pentagonal bipyramidal fashion in all reported complexes, 1 – 7 and 3d – 5d . Four oxygen atoms and three halide ions are coordinated to lanthanide atoms in 1 – 7 , [LnX3(diglyme)(L)]. Four chloride ions, two bridging and two nonbridging, and three oxygen atoms are coordinated to lanthanide atoms in 3d – 5d , [LnCl3(diglyme)]2.  相似文献   

18.
Summary Magnetic and spectral data are reported for the complexes Ln(RCO=CHCOCF3)3 ·nH 2O (Ln=lanthanide; R=p BrC6H4,m-MeC6H4,o-MeC6H4, Bu-t; n=2 or 3). An x-ray crystal structure determination of Er(m-MeC6H4CO=CH-COCF3)3 · 3 H2O showed that the complex is eight-coordinate with three bidentate -diketonato and two aquo ligands; the third water molecule is hydrogen-bonded to one of the coordinated water molecules. The configuration about the erbium atom approximates to a square antiprism. The magnetic moments of the samarium and europium chelates are temperature-dependent, whereas those of the other paramagnetic lanthanides obey the Curie-Weiss law. The visible spectra of the chelates of Pr, Nd, Sin, Eu, Tb, Dy, Ho, Er, and Tm display line-like absorption bands typical of lanthanide ions. Hypersensitive transitions were observed for Nd, Sm, Eu, Dy, Ho, and Er.Part I,Transition Met. Chem., 8, 298 (1983).  相似文献   

19.
Reactions of [LnCl3(DME)2] (Ln = Nd, Sm, Ho, Lu; DME = dimethoxyethane) and diglyme (diglyme = diethylen glycol dimethyl ether) in THF resulted in polymeric [LnCl3(diglyme)]n (Ln = Nd ( 1 ), Sm ( 2 )) or mononuclear complexes [LnCl3(diglyme)(THF)] (Ln = Ho ( 3 ), Lu ( 4 )). Neodymium and samarium atoms in 1 and 2 are eight‐coordinated by three oxygen atoms from diglyme, one terminal and four bridging chloride ions. Holmium and lutetium atoms in 3 and 4 are seven‐coordinated by three oxygen atoms from diglyme, three chloride ions and one oxygen atom from THF. [ErCl3(diglyme)(H2O)] ( 5 ) resulted from the reaction of ErCl3·6H2O, (CH3)3SiCl and diglyme in THF. The molecular structures of 3 , 4 and 5 are similar, with either a molecule of THF coordinated to the lanthanide atom in 3 and 4 or with a molecule of water coordinated in 5 .  相似文献   

20.
The Ln2(H2O)4(L)3·2H2O and Ln2(phen)2(L)3·2H2O complexes [Ln = Eu(III), Sm(III), or Dy(III); H2L = C6F4(COOH)2, phen = 1,10-phenanthroline] have been prepared. Structures of the prepared compounds have been confirmed by X-ray diffraction and IR spectroscopy studies. The complexes of Eu(III) have exhibited red photoluminescence stronger than that of the complexes of Sm(III) and Dy(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号