首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
静态高温高压技术是研究固态相变、材料合成的一个重要手段,目前已有多种类型的装置用于进行不同的高温高压实验.布里奇曼型硬质合金对顶压砧结构简单,能承受100kbar以上的高压,并能用内热法加热达到1000℃左右的温度,高压腔体积也较大.因此国外许多实验室备有这种装置.为了进行高压下非晶态合金结构变态等方面的研究,往往需要100kbar左右压力的高压条件,以期获得更大的压力效应.为此我们建立了这种高温高压装置. 一、压机的选择及容器设计 压机是高压容器产生高压的压力源,对压机的要求是结构简单,操作方便,加压平稳,保压性能好,平行度高等…  相似文献   

2.
基于金属电子气模型,进行了温度、压力对Au反射率变化影响的研究与分析。利用DAC装置开展了压力对Au反射率变化测量实验,以及激光加热的动态温升条件下温度对Au反射率变化测量实验,获得了探测光束波长为488 nm条件下,温度(室温至350 ℃)和压力(11 GPa范围内)对Au反射特性影响的实验结果。结果表明:在11 GPa压力范围内,与温度因素相比,压力对Au的反射率变化影响可忽略;Au对488 nm波长激光的反射率变化趋势为单调递增,变化幅值达约10%,且具有反射率与温度的一一对应特性。通过动高压加载下材料温度瞬态测量要求分析,认为基于Au在488 nm波长下的反射变化特性,可建立一种适用于动高压加载下低温段(低于1000 K)的瞬态测温方法,用于解决材料动高压领域的瞬态测温技术难点。  相似文献   

3.
高压沿面放电烟气脱硫技术动态实验研究   总被引:1,自引:0,他引:1  
本文针对高压沿面放电活化气体的烟气脱硫技术,在静态实验研究的基础上进行了实验室冷态动态的实验研究。设计了便于反应和测量的动态实验装置。实验解释了电子束法脱硫技术中导致氨气泄漏的部分原因,验证了高压沿面放电脱硫技术可以在较低的运行电压下,达到提高脱硫效率,减少氨气泄漏的作用。  相似文献   

4.
忻贤杰 《物理学报》1977,26(1):22-33
本文叙述了一个适用于各种单次瞬态过程的频谱分析仪的工作原理和实验结果。本仪器利用实验室现有设备(通用示波器和声频频谱仪等),经过适当组装和附加少量专用电路,可以较快地建成。利用时间扩展(或压缩)技术,可以将欲测的频谱波段移到声频波段。用光电函数发生器产生待测的瞬态过程的重复波形。这样,就可以用一般的声频频谱仪(或波分析仪)来模拟测量单次瞬态过程的频谱。实验结果证明上述方案是可行的。对主要频谱成份,测量可准确到2—3%。对较弱的频谱成份,准确度要差些。  相似文献   

5.
1.前言 对于物质在超高压作用下的种种性质与行为的研究表明,无论是物质的结构特征,物理性质和化学性质,在超高压下都有显著的变化。深入研究这些变化规律,对于创立具有新性质的物质及其它方面的应用极为重要。 超高压研究的首要任务是建立起高压技术。产生超高压的方法可分为两类。一类是利用爆炸或冲击产生压力,压力可能很高,但它是瞬时的。另一类是静态的产生压力方法,它是利用介质受机械压缩而成。压力维持时间长,便于测量与观察。  相似文献   

6.
李俊  陈小辉  吴强  罗斌强  李牧  阳庆国  陶天炯  金柯  耿华运  谭叶  薛桃 《物理学报》2017,66(13):136101-136101
获取动态压缩条件下结构演化过程是冲击相变及其动力学机理研究最为关注的基础问题之一.对此,基于激光驱动瞬态X射线衍射技术,通过系列实验的物理状态关联和抽运-探测时序控制,实现了静态与动态晶格衍射信号的同时获取,消除了不同实验的装置结构和样品差异带来的测量误差,建立了一种基于原位X射线衍射技术的动态晶格响应测量方法.利用上述实验方法,成功实现了激光冲击加载下[111]单晶铁晶格压缩过程的原位测量,获取弹性及塑性响应的晶格压缩度与宏观雨贡纽测量结果完全符合,从晶格层面证实了超快激光加载下的高屈服强度(雨贡纽弹性极限值大于6 GPa),以及可能与晶向效应或加载率效应相关的相变迟滞现象(至终态压力23.9 GPa仍为体心立方结构),相关物理机制仍有待进一步研究.上述测量方法的建立为后续开展相变动力学机理研究提供了可行的技术途径和重要的参考价值.  相似文献   

7.
1 .《高压物理学报》是高压物理学科的学术刊物 ,在国内外公开发行。本刊力求及时报道高压物理学科基础理论和应用研究方面具有创新性、高水平、有重要意义的研究成果 ,读者对象为从事高压物理专业及相邻专业 (如材料科学、爆炸力学、地球物理、天体物理等 )的国内外科技工作者。   2 .《高压物理学报》进入了国际上主要检索系统 ,如 :EI,CA等 ;是中国物理学类核心期刊。   3.征稿内容为 :动态及静态高压技术 ,人工合成新材料 ,高温高压下材料的力学、光、电、磁等特性以及物质微观结构的研究 ,动态及静态高压研究中的测试技术 ,高…  相似文献   

8.
在单次冲击压缩实验中,运用高敏度瞬态拉曼光谱技术观测了液态硝基甲烷分子的拉曼光谱. 将该拉曼测量技术与二级轻气炮的实验平台结合起来,获得硝基甲烷分子振动模式的高压动态行为. 硝基甲烷被12 GPa压力冲击时的拉曼光谱可清晰探测,其拉曼振动峰仅仅发生了峰位蓝移和峰宽展宽的变化,未显示出化学变化产生的迹象.  相似文献   

9.
详细化学反应机理应用于三维、高度瞬态的湍流燃烧数值模拟时,计算成本巨大.为此,本文提出了一种基于动态自适应建表(ISAT)和动态自适应化学(DAC)的化学反应动力学动态自适应加速方法.该方法基于组分空间的低维流形特性,采用主成分分析法将燃烧区域中的网格节点(或颗粒)从组分空间向低维空间内投影,根据投影点在低维空间内的概率密度函数来刻画系统的非均匀性,进而自适应地选择ISAT和DAC进行加速.本文通过设置内燃机模拟算例,使用甲烷GRI Mech3.0机理,初步验证了新方法的性能。计算结果表明,在保证计算精度的同时,新方法具有明显的加速优势。对于包含500个颗粒的内燃机模拟算例,加速因子可以达到使用ISAT的2.7倍、DAC的1.7倍、固定ISAT-DAC联合的1.8倍。  相似文献   

10.
光频率调制法测量动态光栅瞬态反射谱特性   总被引:1,自引:0,他引:1       下载免费PDF全文
徐攀  胡正良  马明祥  姜暖  胡永明 《物理学报》2012,61(17):174208-174208
动态光栅的瞬态特性影响了单纵模掺铒光纤激光器的稳定性. 提出一种利用铒离子瞬态效应,通过对写入光施加快速频率调制测量动态光栅瞬态反射谱的新方法. 测量了线性结构动态光栅的瞬态反射谱,研究了注入光功率与端面反射率 对动态光栅响应特性的影响.结果表明, 3 m长的掺铒光纤形成的动态光栅半带宽为30 MHz, 与稳态理论值符合较好.光栅瞬态反射率相对变化随注入光功率增加和端面反射率增加而减小, 在小注入功率或低端面反射率时,最大的反射率相对变化值约为4%. 光栅建立时间随注入光功率增加而减小,当注入光功率大于4倍饱和功率时,建立时间小于1 ms. 使用双波混频过程可解释这一实验规律.  相似文献   

11.
电热炮膛压测量技术   总被引:4,自引:0,他引:4       下载免费PDF全文
 主要介绍了一种高瞬态、宽谱的膛压准静态信号的测量方法及其在强电磁干扰环境下采取的抗干扰措施。引入了声腔滤波技术和光电隔离技术,并使用石英压力传感器和PVDF压力传感器进行了实验验证。为电热炮、液体炮等先进驱动系统的高瞬态、宽谱的膛压测量提出了一种有效的方法。  相似文献   

12.
自布里奇曼(P.W.Bridgman)卓有成效地进行高压研究工作以来,随着静态超高压技术和动态超高压技术的发展,科学家们开拓了一个新的重要的研究物质性质的领域——高压物理学.它是一门研究处于超高压条件下物质性质的学科,目前已受到人们广泛的注意和重视.布里奇曼本人也因为这方面  相似文献   

13.
与温度一样,压力是基本的热力学变量.蛋白质在溶液中是多种构象的热力学平衡体.在不同的温度和压力等条件下,蛋白质包括折叠构象、变性构象以及各种中间体在内的不同构象的存在频率各不相同.当用压力作为扰动时,由于这些构象的偏摩尔体积不同,它们的存在频率便会因而发生变化,加压可将平衡向具有较小偏摩尔体积的方向移动.因此,利用高压核磁共振(NMR)技术,不仅可以研究高压对蛋白质结构和动力学的影响,还可以通过改变压力,在更为广泛的构象空间研究蛋白质结构和动力学.例如,利用平衡体系在加压时向体积小的构象方向移动这一特性,能够对在常压下因其存在频率低而难于检测、但在高压下因其体积小而存在频率增加了的构象进行深入研究,而这些构象往往与蛋白质的功能密切相关.该篇综述首先介绍了高压在蛋白质科学研究中的历史、有关概念和高压NMR技术;其次,结合实例,阐述高压NMR技术在蛋白质结构、折叠以及动力学研究中的应用;最后,对高压NMR技术在蛋白质研究中的应用前景进行展望.  相似文献   

14.
《高压物理学报》是我国高压物理领域唯一的专业性学术刊物,在国内外公开发行。力求及时报道高压物理学科基础理论和应用研究方面具有创新性、高水平、有重要意义的研究成果,读者对象为国内外科技工作者。征稿内容为动态及静态高压技术,人工合成新材料,高温高压下材料的力学、光、电、磁等特性以及物质微观结构的研究,动态及静态高压研究中的测试技术,高温高压下的相变,高温高  相似文献   

15.
室温常压下锗是一种具有高载流子迁移率和窄带隙的半导体材料。在高压下,锗具有多种与硅相似的晶相,其有趣的高压行为如压致金属化和超导电性转变引起了高压研究领域的广泛关注。然而,其核心的高压相变动力学机制却鲜有深入研究。利用先进同步辐射光源的高通量X射线衍射结构诊断手段,结合基于金刚石压砧的快速动态压缩技术,研究了锗在高压相变过程中的结构演化机理。采用气膜与压电陶瓷相结合的快速加载方法,实现了数十太帕每秒的压缩速率。采用第三代同步辐射高通量粉光X射线衍射技术,实现了数十微秒时间分辨的结构解析。在相变过程中,新旧相中不同晶面的衍射强度变化存在一定的先后顺序,证实了锗的半导体相(金刚石立方结构)到金属相(β-Sn结构)的转变是位移型相变。此外,通过与静态压缩X射线衍射数据的对比,证实了在此相变过程中不同晶面消失/出现存在先后顺序的行为只能通过动态压缩和动态探测手段观察。  相似文献   

16.
辐射驱动下主动式高精度冲击波速度精密诊断技术   总被引:1,自引:0,他引:1  
激光加载可以产生比气泡加载更高的压力,是高压状态方程研究中一种新的加载方式。在激光加载高压状态方程(EOS)研究中,台阶靶是常用的靶型。针对传统台阶靶存在的预热膨胀问题,提出了使用主动式任意反射面速度干涉仪(VISAR)进行台阶靶预热和冲击波测量的方法。该技术利用条纹图移动量计算厚度增加量,利用冲击波到达自由面产生条纹跳变的时刻来获得精确的冲击波到达时刻。通过修正已测量台阶厚度与膨胀量,可以获得更加精确的台阶厚度值。通过精确的时间间隔可以得到冲击波传输的时间。在匀速传输的条件下可以获得高精度的冲击波传输速度。该方法在辐射驱动超高压条件下具有很好的适用性,可以为状态方程实验提供高精度的冲击波速度数据。  相似文献   

17.
潘昊  王升涛  吴子辉  胡晓棉 《物理学报》2018,67(16):164601-164601
在高压、高应变率加载条件下,孪晶变形对材料的塑性变形具有重要的贡献,而目前孪晶对金属材料的动态屈服强度、冲击响应等的影响还没有被充分揭示.为此,本文考虑孪晶变形和晶粒碎化,针对铍(Be)材料在高应变率加载下的动态力学响应发展了含孪晶的热弹-黏塑性晶体塑性模型.经过和实验结果的对比,发现该模型可以更准确地预测Be材料在动态加载下,尤其是高压动态加载下的屈服强度.进一步,基于该塑性模型研究了Be材料在冲击加载下的准弹性卸载行为,结果表明剪切波速随着压力和剪应变的变化而发生变化是材料产生准弹性卸载现象的主要原因.此外,研究了冲击波卸载过程中Be材料孪晶的演化过程,发现Be材料卸载过程中也伴随着孪晶的产生.  相似文献   

18.
金属材料的微喷是冲击加载下金属表面发生的一种动态破碎现象,微喷研究在很多领域都具有重要意义,包括惯性约束聚变(ICF)和烟火制造等.由于激光实验特有的优势,近几年国内外开展了很多利用强激光驱动冲击加载研究材料微喷过程的实验.利用泡沫材料对微喷颗粒进行静态软回收虽然可以获得颗粒的形态分布、颗粒尺寸及颗粒质量等定量结果,但并不能反演微喷颗粒从进入泡沫到停滞过程中的动态混合过程.为此,在神光Ⅱ升级装置上利用皮秒脉冲激光照射金丝产生高能X射线,实现了对锡微喷颗粒与低密度泡沫混合过程的高时间分辨和高空间分辨背光照相.背光图像面密度结果证实微喷颗粒在泡沫中并没有发生二次破碎.静态回收结果表明,在锡材料与泡沫紧贴放置的情况下,微喷颗粒在泡沫中的穿透深度随着加载压强升高呈现先增大后减小的规律,与非紧贴放置的实验结果有明显的差别.  相似文献   

19.
利用同步辐射光源开展高压X射线衍射(X-ray diffraction,XRD)研究已有近四十年的历史,并且已经取得了非常丰硕的成果.单晶XRD作为高压研究的一部分,在同步辐射装置上的应用也有了接近三十年的历史.近年来,随着同步辐射光学技术以及高压技术、特别是大衍射窗口金刚石对顶砧压腔(diamond anvil cell,DAC)的改进与发展,同步辐射高压单晶衍射实验方法在高压研究中的应用越来越普及.由于能够在压力条件下获得样品在三维空间中的衍射信息分布以及数据具有高信噪比等优势,单晶XRD实验方法不仅可以用于压力条件下的晶体结构解析,如获取晶胞参数、空间群、原子坐标以及原子占位等信息,而且可进一步做晶体电荷密度分析研究,得到更多的化学键、电荷分布及其变化等信息.本文主要介绍同步辐射高压单晶XRD实验方法及相关技术,其中包括单晶XRD实验系统、单晶XRD所用DAC、单晶样品装填以及单晶XRD数据处理等内容.  相似文献   

20.
高压相图     
高压相图是压力作用下的物质状态图.高压相图可以给出在温度和压力的联合作用下固体的结构状态和相平衡的关系,揭示物质在高压力下的许多特殊行为,也可以为高压合成技术和工艺提供有用的信息. 压力对相变的影响是上世纪研究气体液化时开始的.本世纪五十年代,人工合成金刚石的实  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号