首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we present a new branch and bound algorithm for solving a class of integer quadratic knapsack problems. A previously published algorithm solves the continuous variable subproblems in the branch and bound tree by performing a binary search over the breakpoints of a piecewise linear equation resulting from the Kuhn-Tucker conditions. Here, we first present modifications to a projection method for solving the continuous subproblems. Then we implement the modified projection method in a branch and bound framework and report computational results indicating that the new branch and bound algorithm is superior to the earlier method.  相似文献   

2.
We propose an SQP-type algorithm for solving nonlinear second-order cone programming (NSOCP) problems. At every iteration, the algorithm solves a convex SOCP subproblem in which the constraints involve linear approximations of the constraint functions in the original problem and the objective function is a convex quadratic function. Those subproblems can be transformed into linear SOCP problems, for which efficient interior point solvers are available. We establish global convergence and local quadratic convergence of the algorithm under appropriate assumptions. We report numerical results to examine the effectiveness of the algorithm. This work was supported in part by the Scientific Research Grant-in-Aid from Japan Society for the Promotion of Science.  相似文献   

3.
提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先,把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.  相似文献   

4.
We propose a column generation based exact decomposition algorithm for the problem of scheduling n jobs with an unrestrictively large common due date on m identical parallel machines to minimize total weighted earliness and tardiness. We first formulate the problem as an integer program, then reformulate it, using Dantzig–Wolfe decomposition, as a set partitioning problem with side constraints. Based on this set partitioning formulation, a branch and bound exact solution algorithm is developed for the problem. In the branch and bound tree, each node is the linear relaxation problem of a set partitioning problem with side constraints. This linear relaxation problem is solved by column generation approach where columns represent partial schedules on single machines and are generated by solving two single machine subproblems. Our computational results show that this decomposition algorithm is capable of solving problems with up to 60 jobs in reasonable cpu time.  相似文献   

5.
We consider a class of problems of resource allocation under economies of scale, namely that of minimizing a lower semicontinuous, isotone, and explicitly quasiconcave cost function subject to linear constraints. An important class of algorithms for the linearly constrained minimization of nonconvex cost functions utilize the branch and bound approach, using convex underestimating cost functions to compute the lower bounds.We suggest instead the use of the surrogate dual problem to bound subproblems. We show that the success of the surrogate dual in fathoming subproblems in a branch and bound algorithm may be determined without directly solving the surrogate dual itself, but that a simple test of the feasibility of a certain linear system of inequalities will suffice. This test is interpreted geometrically and used to characterize the extreme points and extreme rays of the optimal value function's level sets.Research partially supported by NSF under grant # ENG77-06555.  相似文献   

6.
In this paper, we propose a new branch and bound algorithm for the solution of large scale separable concave programming problems. The largest distance bisection (LDB) technique is proposed to divide rectangle into sub-rectangles when one problem is branched into two subproblems. It is proved that the LDB method is a normal rectangle subdivision(NRS). Numerical tests on problems with dimensions from 100 to 10000 show that the proposed branch and bound algorithm is efficient for solving large scale separable concave programming problems, and convergence rate is faster than ω-subdivision method.  相似文献   

7.
A branch and bound algorithm is presented for the problem of schedulingn jobs on a single machine to minimize tardiness. The algorithm uses a dual problem to obtain a good feasible solution and an extremely sharp lower bound on the optimal objective value. To derive the dual problem we regard the single machine as imposing a constraint for each time period. A dual variable is associated with each of these constraints and used to form a Lagrangian problem in which the dualized constraints appear in the objective function. A lower bound is obtained by solving the Lagrangian problem with fixed multiplier values. The major theoretical result of the paper is an algorithm which solves the Lagrangian problem in a number of steps proportional to the product ofn 2 and the average job processing time. The search for multiplier values which maximize the lower bound leads to the formulation and optimization of the dual problem. The bounds obtained are so sharp that very little enumeration or computer time is required to solve even large problems. Computational experience with 20-, 30-, and 50-job problems is presented.  相似文献   

8.
We consider a budgeting problem where a specified number of projects from some disjoint classes has to be selected such that the overall gain is largest possible, and such that the costs of the chosen projects do not exceed a fixed upper limit. The problem has several application in government budgeting, planning, and as relaxation from other combinatorial problems. It is demonstrated that the problem can be transformed to an equivalent multiple-choice knapsack problem through dynamic programming. A naive transformation however leads to a drastic increase in the number of variables, thus we propose an algorithm for the continuous problem based on Dantzig–Wolfe decomposition. A master problem solves a continuous multiple-choice knapsack problem knowing only some extreme points in each of the transformed classes. The individual subproblems find extreme points for each given direction, using a median search algorithm. An integer optimal solution is then derived by using the dynamic programming transformation to a multiple-choice knapsack problem for an expanding core. The individual classes are considered in an order given by their gradients, and the transformation to a multiple-choice knapsack problem is performed when needed. In this way, only a dozen of classes need to be transformed for standard instances from the literature. Computational experiments are presented, showing that the developed algorithm is orders of magnitude faster than a general LP/MIP algorithm.  相似文献   

9.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

10.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

11.
Lower Bound Improvement and Forcing Rule for Quadratic Binary Programming   总被引:1,自引:0,他引:1  
In this paper several equivalent formulations for the quadratic binary programming problem are presented. Based on these formulations we describe four different kinds of strategies for estimating lower bounds of the objective function, which can be integrated into a branch and bound algorithm for solving the quadratic binary programming problem. We also give a theoretical explanation for forcing rules used to branch the variables efficiently, and explore several properties related to obtained subproblems. From the viewpoint of the number of subproblems solved, new strategies for estimating lower bounds are better than those used before. A variant of a depth-first branch and bound algorithm is described and its numerical performance is presented.  相似文献   

12.
We present a new algorithm, iterative estimation maximization (IEM), for stochastic linear programs with conditional value-at-risk constraints. IEM iteratively constructs a sequence of linear optimization problems, and solves them sequentially to find the optimal solution. The size of the problem that IEM solves in each iteration is unaffected by the size of random sample points, which makes it extremely efficient for real-world, large-scale problems. We prove the convergence of IEM, and give a lower bound on the number of sample points required to probabilistically bound the solution error. We also present computational performance on large problem instances and a financial portfolio optimization example using an S&P 500 data set.  相似文献   

13.
This article presents a simplicial branch and duality bound algorithm for globally solving the sum of convex–convex ratios problem with nonconvex feasible region. To our knowledge, little progress has been made for globally solving this problem so far. The algorithm uses a branch and bound scheme where the Lagrange duality theory is used to obtain the lower bounds. As a result, the lower-bounding subproblems during the algorithm search are all ordinary linear programs that can be solved very efficiently. It has been proved that the algorithm possesses global convergence. Finally, the numerical experiments are given to show the feasibility of the proposed algorithm.  相似文献   

14.
The so called dual parametrization method for quadratic semi-infinite programming (SIP) problems is developed recently for quadratic SIP problems with a single infinite constraint. A dual parametrization algorithm is also proposed for numerical solution of such problems. In this paper, we consider quadratic SIP problems with positive definite objective and multiple linear infinite constraints. All the infinite constraints are supposed to be continuously dependent on their index variable on a compact set which is defined by a number equality and inequalities. We prove that in the multiple infinite constraint case, the minimu parametrization number, just as in the single infinite constraint case, is less or equal to the dimension of the SIP problem. Furthermore, we propose an adaptive dual parametrization algorithm with convergence result. Compared with the previous dual parametrization algorithm, the adaptive algorithm solves subproblems with much smaller number of constraints. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

15.
A branch and bound algorithm is proposed for globally solving a class of nonconvex programming problems (NP). For minimizing the problem, linear lower bounding functions (LLBFs) of objective function and constraint functions are constructed, then a relaxation linear programming is obtained which is solved by the simplex method and which provides the lower bound of the optimal value. The proposed algorithm is convergent to the global minimum through the successive refinement of linear relaxation of the feasible region and the solutions of a series of linear programming problems. And finally the numerical experiment is reported to show the feasibility and effectiveness of the proposed algorithm.  相似文献   

16.
Using constraint partitioning and variable elimination, the authors have recently developed an efficient algorithm for solving linear goal programming problems. However, many goal programs require some or all of the decision variables to be integer valued. This paper shows how the new partitioning algorithm can be extended with a modified branch and bound strategy to solve both pure and mixed type integer goal programming problems. A potential problem in combining the partitioning algorithm and the branch and bound search scheme is presented and resolved.  相似文献   

17.
This paper presents an augmented Lagrangian methodology with a stochastic population based algorithm for solving nonlinear constrained global optimization problems. The method approximately solves a sequence of simple bound global optimization subproblems using a fish swarm intelligent algorithm. A stochastic convergence analysis of the fish swarm iterative process is included. Numerical results with a benchmark set of problems are shown, including a comparison with other stochastic-type algorithms.  相似文献   

18.
We present an algorithm for finding approximate global solutions to quadratically constrained quadratic programming problems. The method is based on outer approximation (linearization) and branch and bound with linear programming subproblems. When the feasible set is non-convex, the infinite process can be terminated with an approximate (possibly infeasible) optimal solution. We provide error bounds that can be used to ensure stopping within a prespecified feasibility tolerance. A numerical example illustrates the procedure. Computational experiments with an implementation of the procedure are reported on bilinearly constrained test problems with up to sixteen decision variables and eight constraints.This research was supported in part by National Science Foundation Grant DDM-91-14489.  相似文献   

19.
We discuss in this paper statistical inference of sample average approximations of multistage stochastic programming problems. We show that any random sampling scheme provides a valid statistical lower bound for the optimal (minimum) value of the true problem. However, in order for such lower bound to be consistent one needs to employ the conditional sampling procedure. We also indicate that fixing a feasible first-stage solution and then solving the sampling approximation of the corresponding (T–1)-stage problem, does not give a valid statistical upper bound for the optimal value of the true problem.Supported, in part, by the National Science Foundation under grant DMS-0073770.  相似文献   

20.
Sequencing problems arise in the context of process scheduling both in isolation and as subproblems for general scenarios. Such sequencing problems can often be posed as an extension of the Traveling Salesman Problem. We present an exact parallel branch and bound algorithm for solving the Multiple Resource Constrained Traveling Salesman Problem (MRCTSP), which provides a platform for addressing a variety of process sequencing problems. The algorithm is based on a linear programming relaxation that incorporates two families of inequalities via cutting plane techniques. Computational results show that the lower bounds provided by this method are strong for the types of problem generators that we considered as well as for some industrially derived sequencing instances. The branch and bound algorithm is parallelized using the processor workshop model on a network of workstations connected via Ethernet. Results are presented for instances with up to 75 cities, 3 resource constraints, and 8 workstations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号