首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, by considering the experts' vague or fuzzy understanding of the nature of the parameters in the problem formulation process, multiobjective linear fractional programming problems with block angular structure involving fuzzy numbers are formulated. Using the a-level sets of fuzzy numbers, the corresponding nonfuzzy a-multiobjective linear fractional programming problem is introduced. The fuzzy goals of the decision maker for the objective functions are quantified by eliciting the corresponding membership functions including nonlinear ones. Through the introduction of extended Pareto optimality concepts, if the decision maker specifies the degree a and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the minimax problems for which the Dantzig-Wolfe decomposition method and Ritter's partitioning procedure are applicable. Then a linear programming-based interactive fuzzy satisficing method with decomposition procedures for deriving a satisficing solution for the decision maker efficiently from an extended Pareto optimal solution set is presented. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

2.
In this paper, by considering the experts' vague or fuzzy understanding of the nature of the parameters in the problem-formulation process, multiobjective 0–1 programming problems involving fuzzy numbers are formulated. Using the a-level sets of fuzzy numbers, the corresponding nonfuzzy α-programming problem is introduced. The fuzzy goals of the decision maker (DM) for the objective functions are quantified by eliciting the corresponding linear membership functions. Through the introduction of an extended Pareto optimality concept, if the DM specifies the degree α and the reference membership values, the corresponding extended Pareto optimal solution can be obtained by solving the augmented minimax problems through genetic algorithms with double strings. Then an interactive fuzzy satisficing method for deriving a satisficing solution for the DM efficiently from an extended Pareto optimal solution set is presented. An illustrative numerical example is provided to demonstrate the feasibility and efficiency of the proposed method.  相似文献   

3.
For decision making problems involving uncertainty, both stochastic programming as an optimization method based on the theory of probability and fuzzy programming representing the ambiguity by fuzzy concept have been developing in various ways. In this paper, we focus on multiobjective linear programming problems with random variable coefficients in objective functions and/or constraints. For such problems, as a fusion of these two approaches, after incorporating fuzzy goals of the decision maker for the objective functions, we propose an interactive fuzzy satisficing method for the expectation model to derive a satisficing solution for the decision maker. An illustrative numerical example is provided to demonstrate the feasibility of the proposed method.  相似文献   

4.
This paper considers multiobjective integer programming problems where each coefficient of the objective functions is expressed by a random fuzzy variable. A new decision making model is proposed by incorporating the concept of probability maximization into a possibilistic programming model. For solving transformed deterministic problems, genetic algorithms with double strings for nonlinear integer programming problems are introduced. An interactive fuzzy satisficing method is presented for deriving a satisficing solution to a decision maker by updating the reference probability levels. An illustrative numerical example is provided to clarify the proposed method.  相似文献   

5.
Most interactive methods developed for solving multiobjective optimization problems sequentially generate Pareto optimal or nondominated vectors and the decision maker must always allow impairment in at least one objective function to get a new solution. The NAUTILUS method proposed is based on the assumptions that past experiences affect decision makers’ hopes and that people do not react symmetrically to gains and losses. Therefore, some decision makers may prefer to start from the worst possible objective values and to improve every objective step by step according to their preferences. In NAUTILUS, starting from the nadir point, a solution is obtained at each iteration which dominates the previous one. Although only the last solution will be Pareto optimal, the decision maker never looses sight of the Pareto optimal set, and the search is oriented so that (s)he progressively focusses on the preferred part of the Pareto optimal set. Each new solution is obtained by minimizing an achievement scalarizing function including preferences about desired improvements in objective function values. NAUTILUS is specially suitable for avoiding undesired anchoring effects, for example in negotiation support problems, or just as a means of finding an initial Pareto optimal solution for any interactive procedure. An illustrative example demonstrates how this new method iterates.  相似文献   

6.
This paper considers multiobjective linear programming problems with fuzzy random variables coefficients. A new decision making model is proposed to maximize both possibility and probability, which is based on possibilistic programming and stochastic programming. An interactive algorithm is constructed to obtain a satisficing solution satisfying at least weak Pareto optimality.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(19-20):4673-4685
This paper proposes an enhanced interactive satisficing method via alternative tolerance for fuzzy goal programming with progressive preference. The alternative tolerances of the fuzzy objectives with three types of fuzzy relations are used to model progressive preference of decision maker. In order to improve the dissatisficing objectives, the relaxed satisficing objectives are sacrificed by modifying their tolerant limits. By means of attainable reference point, the auxiliary programming is designed to generate the tolerances of the dissatisficing objectives for ensuring feasibility. Correspondingly, the membership functions are updated or the objective constraints are added. The Max–Min goal programming model (or the revised one) and the test model of the M-Pareto optimality are solved lexicographically. By our method, the dissatisficing objectives are improved iteratively till the preferred result is acquired. Illustrative examples show its power.  相似文献   

8.
As indicated by the most widely accepted classification, the Multi-Objective Mathematical Programming (MOMP) methods can be classified as a priori, interactive and a posteriori, according to the decision stage in which the decision maker expresses his/her preferences. Although the a priori methods are the most popular, the interactive and the a posteriori methods convey much more information to the decision maker. Especially, the a posteriori (or generation) methods give the whole picture (i.e. the Pareto set) to the decision maker, before his/her final choice, reinforcing thus, his/her confidence to the final decision. However, the generation methods are the less popular due to their computational effort and the lack of widely available software. The present work is an effort to effectively implement the ε-constraint method for producing the Pareto optimal solutions in a MOMP. We propose a novel version of the method (augmented ε-constraint method - AUGMECON) that avoids the production of weakly Pareto optimal solutions and accelerates the whole process by avoiding redundant iterations. The method AUGMECON has been implemented in GAMS, a widely used modelling language, and has already been used in some applications. Finally, an interactive approach that is based on AUGMECON and eventually results in the most preferred Pareto optimal solution is also proposed in the paper.  相似文献   

9.
An interactive satisficing method based on alternative tolerance is proposed for fuzzy multiple objective optimization. The new tolerances of the dissatisficing objectives are generated using an auxiliary programming problem. According to the alternative tolerant limits, either the membership functions are changed, or the objective constraints are added. The lexicographic two-phase programming is implemented to find the final solution. The results of the dissatisficing objectives are iteratively improved. The presented method not only acquires the efficient or weak efficient solution of all the objectives, but also satisfies the progressive preference of decision maker. Numerical examples show its power.  相似文献   

10.
To make a decision that is defined by multiple, conflicting objectives it is necessary to know the relative importance of the different objectives. In this paper we present an interactive method and the underlying theory for solving multiple objective mathematical programming problems defined by a convex feasible region and concave, continuously differentiable objective functions. The relative importance of the different objectives for a decision maker is elicited by using binary comparisons of objective function vectors. The method is cognitively easy to use and in test problems has rapidly converged to an optimal solution.  相似文献   

11.
This paper considers a new optimal location problem, called defensive location problem (DLP). In the DLPs, a decision maker locates defensive facilities in order to prevent her/his enemies from reaching an important site, called a core; for example, “a government of a country locates self-defense bases in order to prevent her/his aggressors from reaching the capital of the country.” It is assumed that the region where the decision maker locates her/his defensive facilities is represented as a network and the core is a vertex in the network, and that the facility locater and her/his enemy are an upper and a lower level of decision maker, respectively. Then the DLPs are formulated as bilevel 0-1 programming problems to find Stackelberg solutions. In order to solve the DLPs efficiently, a solving algorithm for the DLPs based upon tabu search methods is proposed. The efficiency of the proposed solving methods is shown by applying to examples of the DLPs. Moreover, the DLPs are extended to multi-objective DLPs that the decision maker needs to defend several cores simultaneously. Such DLPs are formulated as multi-objective programming problems. In order to find a satisfying solution of the decision maker for the multi-objective DLP, an interactive fuzzy satisfying method is proposed, and the results of applying the method to examples of the multi-objective DLPs are shown.  相似文献   

12.
We develop an interactive approach for multiobjective decision-making problems, where the solution space is defined by a set of constraints. We first reduce the solution space by eliminating some undesirable regions. We generate solutions (partition ideals) that dominate portions of the efficient frontier and the decision maker (DM) compares these with feasible solutions. Whenever the decision maker prefers a feasible solution, we eliminate the region dominated by the partition ideal. We then employ an interactive search method on the reduced solution space to help the DM further converge toward a highly preferred solution. We demonstrate our approach and discuss some variations.  相似文献   

13.
In this paper, we propose interactive fuzzy programming for multi-level 0–1 programming problems through genetic algorithms. Our method is supposed to apply to hierarchical decision problems in which decision-making at each level is sequential from upper to lower level and decision makers are essentially cooperative. After determining the fuzzy goals of the decision makers at all levels, a satisfactory solution is derived efficiently by updating the satisfactory degrees of the decision makers at the upper level with considerations of overall satisfactory balance among all levels. An illustrative numerical example for three-level 0–1 programming problems is provided to demonstrate the feasibility of the proposed method.  相似文献   

14.
Interactive approaches employing cone contraction for multi-criteria mixed integer optimization are introduced. In each iteration, the decision maker (DM) is asked to give a reference point (new aspiration levels). The subsequent Pareto optimal point is the reference point projected on the set of admissible objective vectors using a suitable scalarizing function. Thereby, the procedures solve a sequence of optimization problems with integer variables. In such a process, the DM provides additional preference information via pair-wise comparisons of Pareto optimal points identified. Using such preference information and assuming a quasiconcave and non-decreasing value function of the DM we restrict the set of admissible objective vectors by excluding subsets, which cannot improve over the solutions already found. The procedures terminate if all Pareto optimal solutions have been either generated or excluded. In this case, the best Pareto point found is an optimal solution. Such convergence is expected in the special case of pure integer optimization; indeed, numerical simulation tests with multi-criteria facility location models and knapsack problems indicate reasonably fast convergence, in particular, under a linear value function. We also propose a procedure to test whether or not a solution is a supported Pareto point (optimal under some linear value function).  相似文献   

15.
Recently, genetic algorithms (GAs), a new learning paradigm that models a natural evolution mechanism, have received a great deal of attention regarding their potential as optimization techniques for solving combinatorial optimization problems. In this paper, we focus on multiobjective 0–1 programming problems as a generalization of the traditional single objective ones. By considering the imprecise nature of human judgements, we assume that the decision maker may have fuzzy goal for each of the objective functions. After eliciting the linear membership functions through the interaction with the decision maker, we adopt the fuzzy decision of Bellman and Zadeh or minimum-operator for combining them. In order to investigate the applicability of the conventional GAs for the solution of the formulated problems, a lot of numerical simulations are performed by assuming several genetic operators. Then, instead of using the penalty function for treating the constraints, we propose three types of revised GAs which generate only feasible solutions. Illustrative numerical examples demonstrate both feasibility and efficiency of the proposed methods.  相似文献   

16.
Sonia  Munish C. Puri 《TOP》2004,12(2):301-330
A two level hierarchical balanced time minimizing transportation problem is considered in this paper. The whole set of source-destination links consists of two disjoint partitions namely Level-I links and Level-II links. Some quantity of a homogeneous product is first shipped from sources to destinations by Level-I decision maker using only Level-I links, and on its completion the Level-II decision maker transports the remaining quantity of the product in an optimal fashion using only Level-II links. Transportation is assumed to be done in parallel in both the levels. The aim is to find that feasible solution for Level-I decision maker corresponding to which the optimal feasible solution for Level-II decision maker is such that the sum of shipment times in Level-I and Level-II is the least. To obtain the global optimal feasible solution of this non-convex optimization problem, related balanced time minimizing transportation problems are defined. Based upon the optimal feasible solutions of these related problems, standard cost minimizing transportation problems are constructed whose optimal feasible solutions provide various pairs for shipment times for Level-I and Level-II decision makers. The best out of these pairs is finally selected. Being dependent upon solutions of a finite number of balanced time minimizing and cost minimizing transportation problems, the proposed algorithm is a polynomial bound algorithm. The developed algorithm has been implemented and tested on a variety of test problems and performance is found to be quite encouraging.  相似文献   

17.
An interactive method is developed for solving the general nonlinear multiple objective mathematical programming problems. The method asks the decision maker to provide partial information (local tradeoff ratios) about his utility (preference) function at each iteration. Using the information, the method generates an efficient solution and presents it to the decision maker. In so doing, the best compromise solution is sought in a finite number of iterations. This method differs from the existing feasible direction methods in that (i) it allows the decision maker to consider only efficient solutions throughout, (ii) the requirement of line search is optional, and (iii) it solves the problems with linear objective functions and linear utility function in one iteration. Using various problems selected from the literature, five line search variations of the method are tested and compared to one another. The nonexisting decision maker is simulated using three different recognition levels, and their impact on the method is also investigated.  相似文献   

18.
In this paper we propose an interactive fuzzy programming method for obtaining a satisfactory solution to a “bi-level quadratic fractional programming problem” with two decision makers (DMs) interacting with their optimal solutions. After determining the fuzzy goals of the DMs at both levels, a satisfactory solution is efficiently derived by updating the satisfactory level of the DM at the upper level with consideration of overall satisfactory balance between both levels. Optimal solutions to the formulated programming problems are obtained by combined use of some of the proper methods. Theoretical results are illustrated with the help of a numerical example.  相似文献   

19.
In the present paper, we concentrate on dealing with a class of multiobjective programming problems with random rough coefficients. We first discuss how to turn a constrained model with random rough variables into crisp equivalent models. Then an interactive algorithm which is similar to the interactive fuzzy satisfying method is introduced to obtain the decision maker’s satisfying solution. In addition, the technique of random rough simulation is applied to deal with general random rough objective functions and random rough constraints which are usually hard to convert into their crisp equivalents. Furthermore, combined with the techniques of random rough simulation, a genetic algorithm using the compromise approach is designed for solving a random rough multiobjective programming problem. Finally, illustrative examples are given in order to show the application of the proposed models and algorithms.  相似文献   

20.
In this article, an improved multiobjective chaotic interactive honey bee mating optimization (CIHBMO) is proposed to find the feasible optimal solution of the environmental/economic power dispatch problem with considering operational constraints of the generators. The three conflicting and noncommensurable: fuel cost, pollutant emissions, and system loss, should be minimized simultaneously while satisfying certain system constraints. To achieve a good design with different solutions in a multiobjective optimization problem, Pareto dominance concept is used to generate and sort the dominated and nondominated solutions. Also, fuzzy set theory is used to extract the best compromise solution. The propose method has been individually examined and applied to the standard Institute of Electrical and Electronics Engineers (IEEE) 30‐bus six generator, IEEE 180‐bus 14 generator and 40 generating unit (with valve point effect) test systems. The computational results reveal that the multiobjective CIHBMO algorithm has excellent convergence characteristics and is superior to other multiobjective optimization algorithms. Also, the result shows its great potential in handling the multiobjective problems in power systems. © 2014 Wiley Periodicals, Inc. Complexity 20: 47–62, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号