首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let KL 1(?) and let fL (?) be two functions on ?. The convolution $$ \left( {K*F} \right)\left( x \right) = \int_\mathbb{R} {K\left( {x - y} \right)f\left( y \right)dy} $$ can be considered as an average of f with weight defined by K. Wiener’s Tauberian theorem says that under suitable conditions, if $$ \mathop {\lim }\limits_{x \to \infty } \left( {K*F} \right)\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \int_\mathbb{R} {\left( {K*A} \right)\left( x \right)} $$ for some constant A, then $$ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = A $$ We prove the following ?-adic analogue of this theorem: Suppose K, F, G are perverse ?-adic sheaves on the affine line $ \mathbb{A} $ over an algebraically closed field of characteristic p (p ≠ ?). Under suitable conditions, if $ \left( {K*F} \right)|_{\eta _\infty } \cong \left( {K*G} \right)|_{\eta _\infty } $ , then $ F|_{\eta _\infty } \cong G|_{\eta _\infty } $ , where η is the spectrum of the local field of $ \mathbb{A} $ at .  相似文献   

2.
Let $(Q(k):k\ge 0)$ be an $M/M/1$ queue with traffic intensity $\rho \in (0,1).$ Consider the quantity $$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$ for any $p>0.$ The ergodic theorem yields that $S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]$ , where $Q(\infty )$ is geometrically distributed with mean $\rho /(1-\rho ).$ It is known that one can explicitly characterize $I(\varepsilon )>0$ such that $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$ In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$ where $C(p)>0$ is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.  相似文献   

3.
We consider the problem $$\begin{aligned} -\Delta u=\varepsilon ^{2}e^{u}- \frac{1}{|\Omega |}\int _\Omega \varepsilon ^{2} e^{u}+ {4\pi N\over |\Omega |} - 4 \pi N\delta _p, \quad \text{ in} {\Omega }, \quad \int _\Omega u=0 \end{aligned}$$ in a flat two-torus $\Omega $ with periodic boundary conditions, where $\varepsilon >0,\,|\Omega |$ is the area of the $\Omega $ , $N>0$ and $\delta _p$ is a Dirac mass at $p\in \Omega $ . We prove that if $1\le m<N+1$ then there exists a family of solutions $\{u_\varepsilon \}_{\varepsilon }$ such that $\varepsilon ^{2}e^{u_\varepsilon }\rightharpoonup 8\pi \sum _{i=1}^m\delta _{q_i}$ as $\varepsilon \rightarrow 0$ in measure sense for some different points $q_{1}, \ldots , q_{m}$ . Furthermore, points $q_i$ , $i=1,\dots ,m$ are different from $p$ .  相似文献   

4.
Assume that L p,q , $L^{p_1 ,q_1 } ,...,L^{p_n ,q_n } $ are Lorentz spaces. This article studies the question: what is the size of the set $E = \{ (f_1 ,...,f_n ) \in L^{p_{1,} q_1 } \times \cdots \times L^{p_n ,q_n } :f_1 \cdots f_n \in L^{p,q} \} $ . We prove the following dichotomy: either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is σ-porous in $L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ , provided 1/p ≠ 1/p 1 + … + 1/p n . In general case we obtain that either $E = L^{p_1 ,q_1 } \times \cdots \times L^{p_n ,q_n } $ or E is meager. This is a generalization of the results for classical L p spaces.  相似文献   

5.
In this paper we prove an ε0-regularity theorem for mean curvature flow from surface to a flat Riemannian manifold. More precisely, we prove that if the initial energy ∫Σ0 |A|2 ≤ε0 and the initial area μ0(Σ0) is not large, then along the mean curvature flow, we have ∫Σt|A|2 ≤ε0. As an application, we obtain the long time existence and convergence result of the mean curvature flow.  相似文献   

6.
Let ${\mathcal{D}}_{n,k} $ be the family of linear subspaces of ?n given by all equations of the form $\varepsilon _1 x_{i_1 } = \varepsilon _2 x_{i_2 } = \cdot \cdot \cdot \varepsilon _k x_{i_k } ,$ for 1 ≤ < ? ? ? < i ki and $\left( {\varepsilon _1 ,...,\varepsilon _k } \right)\varepsilon \left\{ { + 1, - 1} \right\}^k $ Also let ${\mathcal{B}}_{n,k,h} $ be ${\mathcal{D}}_{n,k} $ enlarged by the subspaces $x_{j_1 } = x_{j_2 } = \cdot \cdot \cdot x_{j_h } = 0,$ for 1 ≤. The special cases ${\mathcal{B}}_{n,2,1} $ and ${\mathcal{D}}_{n,2} $ are well known as the reflection hyperplane arrangements corresponding to the Coxeter groups of type B nand D n respectively. In this paper we study combinatorial and topological properties of the intersection lattices of these subspace arrangements. Expressions for their Möbius functions and characteristic polynomials are derived. Lexicographic shellability is established in the case of ${\mathcal{B}}_{n,k,h,} 1 \leqslant h < k$ , which allows computation of the homology of its intersection lattice and the cohomology groups of the manifold $\begin{gathered} {\mathcal{D}}_{n,2} \\ M_{n,k,h,} = {\mathbb{R}}^n \backslash \bigcup {{\mathcal{B}}_{n,k,h,} } \\ \end{gathered} $ . For instance, it is shown that $H^d \left( {M_{n,k,k - 1} } \right)$ is torsion-free and is nonzero if and only if d = t(k ? 2) for some $t,0 \leqslant t \leqslant \left[ {{n \mathord{\left/ {\vphantom {n k}} \right. \kern-0em} k}} \right]$ . Torsion-free cohomology follows also for the complement in ?nof the complexification ${\mathcal{B}}_{n,k,h}^C ,1 \leqslant h < k$ .  相似文献   

7.
8.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

9.
Let $\Omega\subset{\Bbb R}^N$ be a bounded domain with Lipschitz boundary. We prove in the first part that a realization of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu}+\beta u=0$ on the boundary $\partial \Omega$ generates a holomorphic $C_0$ -semigroup of angle $\pi/2$ on $C(\overline{\Omega})$ if $0<\beta_0\le \beta\in L^{\infty}(\partial \Omega)$ . With the same assumption on $\Omega$ and assuming that $0\le\beta\in L^{\infty}(\partial \Omega)$ , we show in the second part that one can define a realization of the Laplacian on $C(\overline{\Omega})$ with Wentzell-Robin boundary conditions $\Delta u+\frac{\partial u}{\partial \nu}+\beta u=0$ on the boundary $\partial \Omega$ and this operator generates a $C_0$ -semigroup.  相似文献   

10.
Let Y n denote the Gromov-Hausdorff limit $M^{n}_{i}\stackrel{d_{\mathrm{GH}}}{\longrightarrow} Y^{n}$ of v-noncollapsed Riemannian manifolds with ${\mathrm{Ric}}_{M^{n}_{i}}\geq-(n-1)$ . The singular set $\mathcal {S}\subset Y$ has a stratification $\mathcal {S}^{0}\subset \mathcal {S}^{1}\subset\cdots\subset \mathcal {S}$ , where $y\in \mathcal {S}^{k}$ if no tangent cone at y splits off a factor ? k+1 isometrically. Here, we define for all η>0, 0<r≤1, the k-th effective singular stratum $\mathcal {S}^{k}_{\eta,r}$ satisfying $\bigcup_{\eta}\bigcap_{r} \,\mathcal {S}^{k}_{\eta,r}= \mathcal {S}^{k}$ . Sharpening the known Hausdorff dimension bound $\dim\, \mathcal {S}^{k}\leq k$ , we prove that for all y, the volume of the r-tubular neighborhood of $\mathcal {S}^{k}_{\eta,r}$ satisfies ${\mathrm {Vol}}(T_{r}(\mathcal {S}^{k}_{\eta,r})\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},\eta)r^{n-k-\eta}$ . The proof involves a quantitative differentiation argument. This result has applications to Einstein manifolds. Let $\mathcal {B}_{r}$ denote the set of points at which the C 2-harmonic radius is ≤r. If also the $M^{n}_{i}$ are Kähler-Einstein with L 2 curvature bound, $\| Rm\|_{L_{2}}\leq C$ , then ${\mathrm {Vol}}( \mathcal {B}_{r}\cap B_{\frac{1}{2}}(y))\leq c(n,{\mathrm {v}},C)r^{4}$ for all y. In the Kähler-Einstein case, without assuming any integral curvature bound on the $M^{n}_{i}$ , we obtain a slightly weaker volume bound on $\mathcal {B}_{r}$ which yields an a priori L p curvature bound for all p<2. The methodology developed in this paper is new and is applicable in many other contexts. These include harmonic maps, minimal hypersurfaces, mean curvature flow and critical sets of solutions to elliptic equations.  相似文献   

11.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

12.
We show that every $n$ -point tree metric admits a $(1+\varepsilon )$ -embedding into $\ell _1^{C(\varepsilon ) \log n}$ , for every $\varepsilon > 0$ , where $C(\varepsilon ) \le O\big ((\frac{1}{\varepsilon })^4 \log \frac{1}{\varepsilon })\big )$ . This matches the natural volume lower bound up to a factor depending only on $\varepsilon $ . Previously, it was unknown whether even complete binary trees on $n$ nodes could be embedded in $\ell _1^{O(\log n)}$ with $O(1)$ distortion. For complete $d$ -ary trees, our construction achieves $C(\varepsilon ) \le O\big (\frac{1}{\varepsilon ^2}\big )$ .  相似文献   

13.
In this paper, we study solutions of one phase inhomogeneous singular perturbation problems of the type: $ F(D^2u,x)=\beta _{\varepsilon }(u) + f_{\varepsilon }(x) $ and $ \Delta _{p}u=\beta _{\varepsilon }(u) + f_{\varepsilon }(x)$ , where $\beta _{\varepsilon }$ approaches Dirac $\delta _{0}$ as $\varepsilon \rightarrow 0$ and $f_{\varepsilon }$ has a uniform control in $L^{q}, q>N.$ Uniform local Lipschitz regularity is obtained for these solutions. The existence theory for variational (minimizers) and non variational (least supersolutions) solutions for these problems is developed. Uniform linear growth rate with respect to the distance from the $\varepsilon -$ level surfaces are established for these variational and nonvaritional solutions. Finally, letting $\varepsilon \rightarrow 0$ basic properties such as local Lipschitz regularity and non-degeneracy property are proven for the limit and a Hausdorff measure estimate for its free boundary is obtained.  相似文献   

14.
Consider the following recursively defined sequence: $\tau _1 = 1,\sum\limits_{j = 1}^n {\frac{1} {{\sum\nolimits_{s = j}^n {\tau _s } }}} = 1forn \geqslant 2, $ , which originates from a heat conduction problem first studied by Myshkis (1997). Chang, Chow, and Wang (2003) proved that $\tau _n = \log n + O(1) for large n.$ . In this note, we refine this result to $\tau _n = \log n + \gamma + O\left( {\frac{1} {{\log n}}} \right). $ . where γ is the Euler constant.  相似文献   

15.
Let ${\mathcal{A}}$ be a finite subset of ${\mathbb{N}}$ containing 0, and let f (n) denote the number of ways to write n in the form ${\sum \varepsilon _{j}2^{j}}$ , where ${\varepsilon _{j} \epsilon \mathcal{A}}$ . We show that there exists a computable ${T = T (\mathcal{A})}$ so that the sequence (f (n) mod 2) is periodic with period T. Variations and generalizations of this problem are also discussed.  相似文献   

16.
Given a function $\mathbb{L}_2 $ (?), its Fourier transform $g(x) = \hat f(x) = F[f](x) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {f(x)e^{ - ixt} dt} ,f(t) = F^{ - 1} [g](t) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {g(x)e^{ - ixt} dx} $ and the inverse Fourier transform are considered in the space f ε $\mathbb{L}_2 $ (?). New estimates are presented for the integral $\int\limits_{|t| \geqslant N} {|g(t)|^2 dt} = \int\limits_{|t| \geqslant N} {|\hat f(t)|^2 dt} ,N \geqslant 1,$ in the vase of f ε $\mathbb{L}_2 $ (?) characterized by the generalized modulus of continuity of the kth order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.  相似文献   

17.
Let N be a maximal and discrete nest on a separable Hilbert space H,E the projection from H onto the subspace[C]spanned by a particular separating vector for N′and Q the projection from K=H⊕H onto the closed subspace{(,):∈H}.Let L be the closed lattice in the strong operator topology generated by the projections(E 00 0),{(E 00 0):E∈N}and Q.We show that L is a Kadison-Singer lattice with trivial commutant,i.e.,L′=CI.Furthermore,we similarly construct some Kadison-Singer lattices in the matrix algebras M2n(C)and M2n.1(C).  相似文献   

18.
Let {ξi,-∞i∞} be a doubly infinite sequence of identically distributed-mixing random variables with zero means and finite variances,{ai,-∞i∞} be an absolutely summable sequence of real numbers and X k =∑i=-∞+∞ aiξi+k be a moving average process.Under some proper moment conditions,the precise asymptotics are established for  相似文献   

19.
In this paper,the relationship between the extended family and several mixing properties in measuretheoretical dynamical systems is investigated.The extended family eF related to a given family F can be regarded as the collection of all sets obtained as"piecewise shifted"members of F.For a measure preserving transformation T on a Lebesgue space(X,B,μ),the sets of"accurate intersections of order k"defined below are studied,Nε(A0,A1,...,Ak)=n∈Z+:μk i=0T inAiμ(A0)μ(A1)μ(Ak)ε,for k∈N,A0,A1,...,Ak∈B and ε0.It is shown that if T is weakly mixing(mildly mixing)then for any k∈N,all the sets Nε(A0,A1,...,Ak)have Banach density 1(are in(eFip),i.e.,the dual of the extended family related to IP-sets).  相似文献   

20.
Let ${\mathcal{F}}$ be a separable uniformly bounded family of measurable functions on a standard measurable space ${(X, \mathcal{X})}$ , and let ${N_{[]}(\mathcal{F}, \varepsilon, \mu)}$ be the smallest number of ${\varepsilon}$ -brackets in L 1(μ) needed to cover ${\mathcal{F}}$ . The following are equivalent:
  1. ${\mathcal{F}}$ is a universal Glivenko–Cantelli class.
  2. ${N_{[]}(\mathcal{F},\varepsilon,\mu) < \infty}$ for every ${\varepsilon > 0}$ and every probability measure μ.
  3. ${\mathcal{F}}$ is totally bounded in L 1(μ) for every probability measure μ.
  4. ${\mathcal{F}}$ does not contain a Boolean σ-independent sequence.
It follows that universal Glivenko–Cantelli classes are uniformity classes for general sequences of almost surely convergent random measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号