首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report a surface‐enhanced Raman spectroscopy (SERS) investigation to probe the adsorption and dynamic behavior of rhodamine 6 G (Rh6G) molecules on spherical Ag nanoparticles which were produced via laser ablation in liquid. Assembly of the colloidal Ag nanoparticles on a cover glass was used to work as SERS substrates on which high‐quality SERS spectra of Rh6G were obtained with interesting time dependence when using low and ultralow concentrations, respectively. The variation of SERS spectra over time was identified with the adsorption behavior of multiple and individual molecules on the Ag nanoparticles. Analysis indicates that the adsorbed Rh6G molecules can desorb away from the initial locations on the substrate under continuous laser excitation; simultaneously, some individual molecules can move and become trapped in the gap between the aggregated Ag nanoparticles. These investigations help to clarify the origins of forming ‘hot‐spots’ which host probe molecules and hence improve the understanding of mechanisms for single‐molecule SERS spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, we demonstrated a bottom‐up growth of Ag@SiO2/Ag core‐shell nanosphere arrays with tunable SiO2 interior insulator and the optimized surface‐enhanced Raman scattering (SERS) substrate based on a nanostructure performed with both high sensitivity and large‐area uniformity. Their morphological, structural, and optical properties were characterized, and the induced SERS activities were investigated theoretically by the FDTD simulation and experimentally using analyte molecules. An ultrathin SiO2 shell with tunable thickness can be synthesized pinhole‐free by a chemical vapor deposition, working as an interior insulator between the Ag core and Ag out‐layer coating. A detection limit as low as 10−12 M and an enhancement factor up to 3 × 107 were obtained, and the SERS signal was highly reproducible with small standard deviation. The method opened up a way to create a new class of SERS activity sensor with high‐density ‘hot spots’, and it may play an important role in device design and the corresponding biological and food safety monitoring applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A simple method is demonstrated to detect DNA at low concentrations on the basis of surface‐enhanced Raman scattering (SERS) via polyvinyl alcohol‐protected silver grasslike patterns (PVA‐Ag GPs) grown on the surface of the common Al substrate. By the SERS measurements of sodium citrate and thymine, the PVA‐Ag GPs are shown to be an excellent SERS substrate with good activity, stability and reproducibility. With the use of the tested molecule of thymine, the enhancement factor of the PVA‐Ag GPs is up to ~1.4 × 108. The PVA‐Ag GPs are also shown to be an excellent SERS substrate with good biocompatibility for DNA detection, and the detection limit is down to ~10−5 mg/g. Meanwhile, the assignations of the Raman bands and the adsorption behaviors of the DNA molecules are also analyzed. In this work, the geometry optimization and the wavenumber analysis of adenine–Ag and guanine–Ag complexes for the ground states are performed using density functional theory, B3LYP functional and the LanL2DZ basis set. The transition energies and the oscillator strengths of adenine–Ag and guanine–Ag for the lowest six singlet excited states were calculated by using the time‐dependent density functional theory method with the same functional and basis set. The results show that the charge transfer in the adenine–Ag and guanine–Ag complexes should be the chemical factor for the SERS of the DNA molecules. Lastly, this method may be employed in large‐scale preparation of substrates that have been widely applied in the Raman analysis of DNA because the fabrication process is simple and inexpensive. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Plasmonic systems based on metal nanoparticles on a metal film with high optical absorption have generated great interests for surface‐enhanced Raman scattering (SERS). In this study, we prepare a broadband‐visible light absorber consisting Au nanotriangles on the surface of a continuous optically opaque gold film separated with a dielectric SiO2 layer, which is a typical metal‐insulator‐metal (MIM) system, and demonstrate it as an efficient SERS substrate. The MIM nanostructure, prepared using nanosphere lithography with a very large area, shows a broadband with absorption exceeding 90% in the wavelength regime of 630–920 nm. We observe an average SERS enhancement factor (EF) as large as 4.9 × 106 with a 22‐fold increase compared to a single layer of Au nanotriangles directly on a quartz substrate. A maximum SERS EF can be achieved by optimizing the thicknesses of the dielectric layer to control the optical absorption. Owing to the simple, productive, and inexpensive fabrication technique, our MIM nanostructure could be a potential candidate for SERS applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Ag film over nanosphere (AgFON) substrates for surface‐enhanced Raman spectroscopy (SERS) are shown to be ineffective for the detection of proteins in phosphate buffer solution (PBS) because of the decomposition of the substrate resulting in a total loss of SERS activity. However, modification of these substrates with SiO2 overlayers overcomes this problem. The SiO2 overlayers are produced by filtered arc deposition (FAD) and are characterised by atomic force microscopy (AFM). Their porosity is examined using Raman spectroscopy and the detection of cytochrome c and bovine serum albumin in PBS is successfully demonstrated. These findings show promise for the detection of proteins in biologically relevant conditions using Ag‐based SERS substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Interest in the synthesis of hybrid substrates for surface‐enhanced Raman scattering (SERS) has surged recently. Hereof, in the present work, a hybrid SERS substrate CuO : Mn/Ag heterojunction has been synthesised. To accomplish this, the nanostructred Ag island film and CuO : Mn nanoparticles are synthesised by vacuum thermal evaporation method and sol–gel method respectively, and thereafter, a heterojunction between the CuO : Mn and Ag is fabricated by adsorption of CuO : Mn (10‐3 m in ethanol) on Ag island film. Further, the SERS sensitivity of CuO : Mn/Ag heterojunctions has been studied by probing methyl orange. We observed that with Mn‐doping in the lattice of CuO, the SERS signal is enhanced considerably because of ferromagnetic ordering in CuO : Mn. DFT/B3LYP/6‐311 G(d, p) method is used to calculate the energy of HOMO and LUMO level of methyl orange. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Three‐dimensional (3D) nanoporous gallium nitride (PGaN) scaffolds are fabricated by Pt‐assisted electroless hydrofluoric acid (HF) etching of crystalline GaN followed by in situ electroless deposition of Ag nanostructures onto the interior surfaces of the nanopores, yielding a large surface area substrate for surface‐enhanced Raman scattering (SERS). The resulting 3D SERS‐active substrates have been optimized by varying reaction parameters and starting material concentration, exhibiting enhanced Raman signals 10–100× more intense than either (1) sputtered Ag‐coated porous GaN or (2) Ag‐coated planar GaN. The increase in SERS signal is attributed to a combination of the large surface area and the inherent transparency of PGaN in the visible spectral region. Overall, Ag‐decorated PGaN is a promising platform for high sensitivity SERS detection and chemical analysis, particularly for reaction and metabolic products that can be trapped inside the highly anisotropic nanoscale pores of PGaN. The potential of this sampling mode is illustrated by the ability to acquire Raman spectra of adenine down to 5 fmol. Additionally, correlated SERS and laser desorption/ionization mass spectrometry spectra can be acquired from same sample spot without further preparation, opening new possibilities for the investigation of surface‐bound molecules with substantially enhanced information content. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, we propose a new electrochemical method to prepare surface‐enhanced Raman scattering (SERS)‐active silver substrates in nitric acid solutions. Experimental results indicate that the SERS intensity of adsorbed Rhodamine 6G (R6G) can be significantly increased, as compared with that of R6G adsorbed on a SERS‐active Ag substrate prepared by an electrochemical method in a chloride‐containing solution, which was generally employed in the literature. Moreover, the SERS of R6G on the newly developed substrate (prepared in a nitric acid solution) still performs well at a high temperature of 250 °C. However, the enhancement capability of the SERS‐active substrate prepared in a chloride‐containing solution is seriously destroyed at temperatures higher than 150 °C. Further investigations indicate that the oxidation states of roughened Ag substrates prepared in nitric acid solutions under different experiment conditions have less influence on the corresponding SERS performances. Instead, different surface morphologies of roughened Ag substrates and different contents of nitrogen‐containing dopping ions on the roughened Ag substrates demonstrate significant effects on the corresponding SERS performances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, electrochemically roughened gold is modified with underpotential deposition (UPD) silver to investigate the effects on enhancements in the intensity and the thermal stability of surface‐enhanced Raman scattering (SERS). The SERS of Rhodamine 6G (R6G) adsorbed on the UPD Ag‐modified Au substrate exhibits a higher intensity by six‐fold of magnitude, as compared with that of R6G adsorbedon the unmodified Au substrate. Moreover, the SERS enhancement capabilities of UPD Ag‐modified Au and unmodified Au substrates are seriously depressed at temperatures higher than 200 and 150 °C, respectively. It indicates that the modification of UPD Ag can significantly depress the thermal destruction of SERS‐active substrates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Kinetensin (KN) and its amino acids 1–8 fragment ([des‐Leu9]KN), neuromedin N (NMN), and xenopsin (XP) and its two analogs (XP‐1 and XP‐2) belong to the neurotensin family of peptides and are known to stimulate the growth of human tumors. In this work, we report Fourier transform‐Raman and surface‐enhanced Raman scattering (SERS) studies of these peptides and discuss their structures, orientation, and mode of adsorption onto a highly specific, electrochemically roughened SERS‐active Ag electrode that is characterized by the formation of a 50–150 nm Ag island on its surface. We show that the investigated peptides bind preferentially to this surface by substantial electronic overlap between the metal surface and the π‐orbitals of the benzene rings of the Phe, Tyr, and Trp residues, which forces them to take parallel or almost parallel orientations with respect to the surface. In addition, the –CH2–, –CNH2, and –COO molecular fragments are involved in interactions with (binding to or in close proximity with) the Ag surface. The SERS data show that the adsorption modes in each of these cases are very similar. In addition, we show that the specific differences in the amino acid sequences do not significantly affect the orientation of the investigated peptides on the Ag substrate. This result implies that the N‐termini of the neurotensin‐family peptides do not influence the mode for adsorption onto the Ag substrates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We created novel surface-enhanced Raman spectroscopy (SERS) substrates by metalization (Ag) of Si nanograss prepared by a Bosch process which involves deep reactive ion etching of single crystalline silicon. No template or lithography was needed for making the Si nanograss, thus providing a simple and inexpensive method to achieve highly sensitive large-area SERS substrates. The dependence of the SERS effect on the thickness of the metal deposition and on the surface morphology and topology of the substrate prior to metal deposition was studied in order to optimize the SERS signals. We observed that the Ag-coated Si nanograss can achieve uniform SERS enhancement over large area (∼1 cm ×1 cm) with an average EF (enhancement factor) of 4.2×108 for 4-mercaptophenol probe molecules. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

13.
Incubator‐shaker method was used as a rapid technique to fabricate an efficient surface enhanced Raman scattering (SERS) substrate by combination of zero valent nanostructures and carbon fiber, which shows dramatic Raman enhancement of nitroaromatic molecule. The fabricated Ag nanoparticle on carbon‐fiber substrate (Ag–C) was used as an efficient SERS substrate to detect the adsorbed 2, 4‐dinitrotoluene molecules with a detection limit of 50 ppm. In advent, our developed SERS substrates could have great potential in detecting other nitro‐aromatic based‐explosive materials, such as 2, 4, 6‐trinitrotoluene molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
本文提出一种基于气相沉积银纳米粒子和三维石墨烯-镍泡沫的复合等离激元结构.该结构是利用气相纳米团簇束流技术将高密度的银纳米粒子直接沉积于三维石墨烯-镍泡沫的表面制备而成.与传统银纳米结构相比,复合三维等离激元纳米结构具有"热点"数量多,局域场更强的特点,可作为基于表面增强拉曼技术的高灵敏度化学传感器.拉曼测试实验结果表明,该三维纳米结构在表面增强拉曼检测中可获得灵敏度高,重复性好的探针拉曼信号.通过进一步的理论模拟,发现该三维等离激元结构中增强的拉曼信号主要归因于纳米粒子与纳米粒子之间以及纳米粒子与石墨烯-镍泡沫衬底之间的多重近场耦合效应.  相似文献   

15.
Metallic nanostructures, much smaller than the wavelength of visible light, which support localized surface plasmon resonances, are central to the giant signal enhancement achieved in surface‐enhanced Raman scattering (SERS) and surface‐enhanced resonance Raman scattering (SERRS). Plasmonic driven SERS and SERRS is a powerful analytical tool for ultrasensitive detection down to single molecule detection. For all practical SERS applications a key issue is the development of reproducible and portable SERS‐active substrates, where the most widely used metals for nanostructure fabrication are silver and gold. Here, we report the fabrication of a ‘smart film’, containing gold nanoparticles (AuNPs), produced by in situ reduction of gold chloride III (Au+3) in natural rubber (NR) membranes for SERS and SERRS applications. The composite films (NR/AuNP membranes) show characteristic plasmon absorption of Au nanostructures, which notably do not influence the mechanical properties of the NR membranes. The term ‘smart film’ has to do with the fact that the SERS substrate (smart film) is flexible and standalone, which allows one to take it anywhere and to dip it into solutions containing the analyte to be characterized by SERS or SERRS technique. Besides, the synthesis of the AuNPs at the surface of NR films is much simpler than making an Au colloid and cast it onto a substrate surface or preparing an Au evaporated film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
为了研究不同直径PS微球(表面溅射Ag膜)基底的表面增强拉曼散射(SERS)效应,制造了一个新的表面增强拉曼散射(SERS)基底。通过在n型(100)单晶硅片上采用旋涂的方法,得到不同直径的呈六角形有序排列的单层PS微球阵列,然后在PS微球阵列表面磁控溅射一层约30 nm的Ag膜。利用拉曼光谱仪以罗丹明R6G为探针进行了SERS光谱测定,分析比较了不同直径PS微球阵列的表面增强拉曼散射效应,结果表明,溅射有Ag膜的PS微球基底在不同直径下均有不同程度的SERS效应。随着微球直径的增加,PS微球阵列的起伏程度不断加强(粗糙度不断增加),SERS信号逐渐增强,当球直径达到600 nm时,峰的增强信号达到最大,进而获得了一个最优化的SERS基底。同时发现在基底上获得了高信噪比的R6G的SERS光谱, 与苯环相关的一系列CC双键伸缩振动特征谱以及与苯环相关的面内、面外变形振动特征谱均获得了明显增强。这种单一的大区域的拉曼散射基底,呈现出高低相间起伏分布的微观形貌,不同PS微球之间的空隙和深度有很明显的不同,能够显著改善表面Ag膜颗粒的大小和分布,进而提高了PS微球基底的SERS活性。该基底所具有的特殊阵列结构使其在利用SERS探究化学和生物等领域的单分子结构有很大的应用潜力。  相似文献   

17.
In this study, we demonstrate an easy particle‐mediated protocol using the specific structure of mesocrystal Ag2O sacrificial templates to synthesize highly rough‐cubic Ag mesocages. To the best of our knowledge, the mesocrystal particles are reported for the first time as sacrificial templates for synthesizing metal particles. The obtained Ag mesocages show high surface‐enhanced Raman scattering (SERS) sensitivity because of the highly rough topography formed by arrays of uniform individual Ag nanoparticles. Abundant “hot spots” with greatly enhanced local electromagnetic field are promoted densely on the mesocage surface by the plenty of deep and narrow gaps and the hollow structure. The single‐particle SERS signal generated by the Ag mesocage has an enhancement factor of approximately 109, which is approximately four times higher than the Ag mesocage synthesized using single‐crystal Ag2O particle as a template. Meanwhile, this signal displays a linear dependence on the detected analyte concentration, sensitively down to 1.0 × 10?12 m .  相似文献   

18.
Reactive ion etching was used to fabricate black‐Si over the entire surface area of 4‐inch Si wafers. After 20 min of the plasma treatment, surface reflection well below 2% was achieved over the 300–1000 nm spectral range. The spikes of the black‐Si substrates were coated by gold, resulting in an island film for surface‐enhanced Raman scattering (SERS) sensing. A detection limit of 1 × 10?6 M (at count rate > 102 s?1 . mW?1) was achieved for rhodamine 6G in aqueous solution when drop cast onto a ~ 100‐nm‐thick Au coating. The sensitivity increases for thicker coatings. A mixed mobile‐on‐immobile platform for SERS sensing is introduced by using dog‐bone Au nanoparticles on the Au/black‐Si substrate. The SERS intensity shows a non‐linear dependence on the solid angle (numerical aperture of excitation/collection optics) for a thick gold coating that exhibits a 10 times higher enhancement. This shows promise for augmented sensitivity in SERS applications.  相似文献   

19.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The solid‐phase synthesis of Ag‐coated Fe3O4 microsphere was elaborated under argon atmosphere. This straightforward process utilized neither reducing agents nor electric current and involved the dry mixing of a precursor of CH3COOAg with Fe3O4 microspheres followed by heating in an inert atmosphere. Ag nanoparticles with diameters of 30–50 nm were well‐decorated on the surfaces of Fe3O4 microspheres. The as‐synthesized Ag‐coated Fe3O4 microspheres were assembled into a surface‐enhanced Raman scattering (SERS) substrate holding clean and reproducible properties under an externally exerted magnetic force. Using these nanoprobes, analyte molecules can be easily captured, magnetically concentrated, and analyzed by SERS. This clean SERS substrate was used to detect 4‐aminothiophenol, even at a concentration as low as1.0 × 10–12 M. In particular, the Ag‐coated Fe3O4 microspheres, acting as reproducible SERS substrates, were applied to detect methyl‐parathion and 4‐mercaptopyridine. Strong SERS signals were obtained with the analytes at a concentration of 1.0 × 10–6 M. The unique, clean, and reproducible properties indicate a new route in eliminating the single‐use problem of traditional SERS substrates and show promising applications for detecting other organic pollutants. Similarly, this work may provide a new model system to a series of metal–Fe3O4 decorating reactions for a reproducible utilization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号