首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
The important notions and results of the integral invariants of Poincare and Cartan-Poincare and the relationship between integral invariant and invariant form established first by E. Cartan in the classical mechanics are generalized to Hamilton mechanics on Kahler manifold, by the theory of modern geometry and advanced calculus, to get the corresponding wider and deeper results.  相似文献   

2.
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraintinvariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can‘ t be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.  相似文献   

3.
Symplectic solution system for reissner plate bending   总被引:3,自引:0,他引:3  
Based on the Hellinger-Reissner variatonal principle for Reissner plate bendingand introducing dual variables, Hamiltonian dual equations for Reissner plate bending werepresented. Therefore Hamiltonian solution system can also be applied to Reissner platebending problem, and the transformation from Euclidian space to symplectic space and fromLagrangian system to Hamiltonian system was realized. So in the symplectic space whichconsists of the original variables and their dual variables, the problem can be solved viaeffective mathematical physics methods such as the method of separation of variables andeigenfunction-vector expansion. All the eigensolutions and Jordan canonical formeigensolutions for zero eigenvalue of the Hamiltonian operator matrix are solved in detail, and their physical meanings are showed clearly. The adjoint symplectic orthonormal relation of the eigenfunction vectors for zero eigenvalue are formed. It is showed that the alleigensolutions for zero eigenvalue are basic solutions of the Saint-Venant problem and theyform a perfect symplectic subspace for zero eigenvalue. And the eigensolutions for nonzeroeigenvalue are covered by the Saint-Venant theorem. The symplectic solution method is notthe same as the classical semi-inverse method and breaks through the limit of the traditional semi-inverse solution. The symplectic solution method will have vast application.  相似文献   

4.
EIGENVALUE PROBLEM OF A LARGE SCALE INDEFINITE GYROSCOPIC DYNAMIC SYSTEM   总被引:3,自引:0,他引:3  
Gyroscopic dynamic system can be introduced to Hamiltonian system.Based on an adjoint symplectic subspace iteration method of Hamiltonian gyroscopic system, an adjoint symplectic subspace iteration method of indefinite Hamiltonian function gy- roscopic system was proposed to solve the eigenvalue problem of indefinite Hamiltonian function gyroscopic system.The character that the eigenvalues of Hamiltonian gyroscopic system are only pure imaginary or zero was used.The eigenvalues that Hamiltonian function is negative can be separated so that the eigenvalue problem of positive definite Hamiltonian function system was presented,and an adjoint symplectic subspace iteration method of positive definite Hamiltonian function system was used to solve the separated eigenvalue problem.Therefore,the eigenvalue problem of indefinite Hamiltonian function gyroscopic system was solved,and two numerical examples were given to demonstrate that the eigensolutions converge exactly.  相似文献   

5.
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elastc-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.  相似文献   

6.
The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations.Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary,associated with Whitney’s umbrella.The first explanation of Ziegler’s paradox was given(much earlier)by Oene Bottema in 1956.The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.  相似文献   

7.
The stability of partly liquid filled spacecraft with flexible attachment was investigated in this paper.Liquid sloshing dynamics was simplified as the spring–mass model, and flexible attachment was modeled as the linear shearing beam. The dynamic equations and Hamiltonian of the coupled spacecraft system were given by analyzing the rigid body, liquid fuel, and flexible appendage. Nonlinear stability conditions of the coupled spacecraft system were derived by computing the variation of Casimir function which was added to the Hamiltonian. The stable region of the parameter space was given and validated by numerical computation. Related results suggest that the change of inertia matrix, the length of flexible attachment,spacecraft spinning rate, and filled ratio of liquid fuel tank have strong influence on the stability of the spacecraft system.  相似文献   

8.
A fast adaptive symplectic algorithm named Multiresolution Symplectic Scheme (MSS) was first presented to solve the problem of the wave propagation (WP) in complex media, using the symplectic scheme and Daubechies‘ compactly supported orthogonal wavelet transform to respectively discretise the time and space dimension of wave equation. The problem was solved in multiresolution symplectic geometry space under the conservative Hamiltonian system rather than the traditional Lagrange system. Due to the fascinating properties of the wavelets and symplectic scheme, MSS is a promising method because of little computational burden, robustness and reality of long-time simulation.  相似文献   

9.
Combining the symplectic variations theory,the homogeneous control equa- tion and isoparametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced.Firstly,based on the generalized Hamilton variation principle,the non-homogeneous Hamilton canonical equation for piezothermoelastic bod- ies was derived.Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered,and the non-homogeneous canoni- cal equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the inceusement of dimensions of the canonical equation.For the convenience of deriving Hamilton isoparametric element formulations with four nodes,one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle.The homogeneous equa- tion simplifies greatly the solution programs which are often performed to solve non- homogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.  相似文献   

10.
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.  相似文献   

11.
For a fractional generalized Hamiltonian system, in terms of Riesz derivatives, stability theory for the manifolds of equilibrium states is presented. The gradient representation and second order gradient representation of a fractional generalized Hamiltonian system are studied, and the conditions under which the system can be considered as a gradient system and a second order gradient system are given, respectively. Then, equilibrium equations, disturbance equations, and first approximate equations of a fractional generalized Hamiltonian system are obtained. A theorem for the stability of the manifolds of equilibrium states of the general autonomous system is used to a fractional generalized Hamiltonian system, and three propositions on the stability of the manifolds of equilibrium states of the system are investigated. As the special cases of this article, the conditions which a fractional generalized Hamiltonian system can be reduced to a generalized Hamiltonian system, a fractional Hamiltonian system and a Hamiltonian system are given, respectively, and the stability theory for the manifolds of equilibrium states of these systems are obtained. Further, a fractional dynamical system and a fractional Volterra model of the three species groups are given to illustrate the method and results of the application. Finally, by using the method in this paper, we construct a new kind of fractional dynamical model, i.e. the fractional Hénon–Heiles model, and we study its stability of the manifolds of equilibrium states.  相似文献   

12.
For a generalized Hamiltonian system, stability for the manifolds of equilibrium states is presented based on Lyapunov’s stability theories. Equilibrium equations, perturbation equations and first approximate equations of the system are given. A theorem for the stability of manifolds of equilibrium states of general autonomous system is used to the generalized Hamiltonian system, and three propositions on the stability of manifolds of equilibrium states of the system are obtained. Two examples are given to illustrate application of the method and results.  相似文献   

13.
For a generalized Hamiltonian system with additional terms, stability for the manifolds of the equilibrium state is presented. Equilibrium equations, disturbance equations and the first approximate equations of the system are given. A theorem for the stability of the manifolds of the equilibrium state of a general autonomous system is used for the generalized Hamiltonian systems with additional terms, and three propositions on the stability of the manifolds of the equilibrium state of the system are obtained. An example is given to illustrate the application of the method and results. At last, we study the stability for manifolds of the equilibrium state of the Euler equations of a rigid body subjected to external moments of force, by using of the method in this paper.  相似文献   

14.
非完整约束系统几何动力学研究进展:Lagrange理论及其它   总被引:1,自引:1,他引:0  
近10年来, 非完整力学的发展主要集中在两个相互关联的方向上, 一个是非完整运动规划, 另一个则是非完整约束系统的几何动力学, 这两个研究方向都充分地利用了现代几何学, 如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论, 包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学, 文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外, 简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.   相似文献   

15.

Perpetual points in mathematics defined recently, and their significance in nonlinear dynamics and their application in mechanical systems is currently ongoing research. The perpetual points significance relevant to mechanics so far is that they form the perpetual manifolds of rigid body motions of unforced mechanical systems, which lead to the definition of perpetual mechanical systems. The perpetual mechanical systems admit as perpetual points rigid body motions which are forming the perpetual manifolds. The concept of perpetual manifolds extended to the definition of augmented perpetual manifolds that an externally excited multi-degree of freedom mechanical system is moving as a rigid body, and may exhibit particle-wave motion. This article is complementary to the work done so far applied to natural perpetual dissipative mechanical systems with motion defined by the exact augmented perpetual manifolds, whereas the internal forces, and individual energies are examined, to understand further the mechanics of these systems while their motion is in the exact augmented perpetual manifolds. A theorem is proved stating that under conditions when the motion of a perpetual natural dissipative mechanical system is in the exact augmented perpetual manifolds, all the internal forces are zero, which is rather significant in the mechanics of these systems since the operation on augmented perpetual manifolds leads to zero internal degradation. Moreover, the theorem is stating that the potential energy is constant, and there is no dissipation of energy, therefore the process is internally isentropic, and there is no energy loss within the perpetual mechanical system. Also in this theorem is proved that the external work done is equal to the changes of the kinetic energy, therefore the motion in the exact augmented perpetual manifolds is driven only by the changes of the kinetic energy. This is also a significant outcome to understand the mechanics of perpetual mechanical systems while it is in particle-wave motion which is guided by kinetic energy changes. In the final statement of the theorem is stated and proved that the perpetual dissipative mechanical system can behave as a perpetual machine of third kind which is rather significant in mechanical engineering. Noting that the perpetual mechanical system apart of the augmented perpetual manifolds solutions is having other solutions too, e.g., in higher normal modes and in these solutions the theorem is not valid. The developed theory is applied in the only two possible configurations that a mechanical system can have. The first configuration is a perpetual mechanical system without any connection through structural elements with the environment. In the second configuration, the perpetual mechanical system is a subsystem, connected with structural elements with the environment. In both examples, the motion in the exact augmented perpetual manifolds is examined with the view of mechanics defined by the theorem, resulting in excellent agreement between theory and numerical simulations. The outcome of this article is significant in physics to understand the mechanics of the motion of perpetual mechanical systems in the exact augmented perpetual manifolds, which is described through the kinetic energy changes and this gives further insight into the mechanics of particle-wave motions. Also, in mechanical engineering the outcome of this article is significant, because it is shown that the motion of the perpetual mechanical systems in the exact augmented perpetual manifolds is the ultimate, in the sense that there are no internal forces which lead to degradation of the internal structural elements, and there is no energy loss due to dissipation.

  相似文献   

16.
Nondissipative classical continuum mechanics, in both Eulerian and Lagrangian formulations, is extended to complex fluids and complex solids. The extensions involve extra fields characterizing microstructure, preserve the Hamiltonian structure of the classical theory, and are rigorously derived from Hamiltonian formulations of the particle mechanics and statistical mechanics.  相似文献   

17.
LAGRANGIANVECTORFIELDONK■HLERMANIFOLDZhangRongpe(张荣业).(ReceivedApril16,1995;CommunicatedbyZhuZhaoxuan)Abstract:Inthispaper.we...  相似文献   

18.
Lagrangian mechanics in Newtonian-Riemannian space-time and relationship between Lagrangian mechanics and Newtonian mechanics, and between Lagrangian mechanics and Hamiltonian mechanics in N-R space-time are discussed.  相似文献   

19.
IntroductionLagrangianmechanicsisanimportantpartofanalyticalmechanics.ItisageneralizationofNewtonianmechanics.Newtonianmechanicsisestablishedontheconfigurationspace—Riemannianmanifold .Lagrangianmechanicsisestablishedonitstangentbundle ,Hamiltonianmecha…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号