首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid (composite) electroactive films consisting of such an organic conducting polymer as poly(3,4-ethylenedioxythiophene), PEDOT, and such a polynuclear inorganic compound as amorphous tungsten oxide, WO3/H x WO3 were fabricated on carbon electrodes through electrodeposition by voltammetric potential in acid solution containing EDOT monomer and sodium tungstate. Electrostatic interactions between the negatively charged tungstic units (existing within WO3) and the oxidized positively charged conductive polymer (oxidized PEDOT) sites create a robust hybrid structure which cannot be considered as a simple mixture of the organic and inorganic components. It is apparent from scanning electron microscopy that hybrid structures are granular but fairly dense. Because PEDOT and mixed-valence tungsten oxides are electronically conducting, the resulting hybrid films are capable of fast propagation. The reversible and fast redox reactions of tungsten oxide component lie in the potential range where PEDOT matrix is conductive. Furthermore, the hybrid films exhibit good mediating capabilities towards electron transfers between model redox couples such as cationic iron(III,II) and anionic hexacyanoferrate(III,II). Since the films accumulate effectively charge and show high current densities at electrochemical interfaces, they could be of importance to electrocatalysis and to construction of redox capacitors.  相似文献   

2.
The influence of the preparation method in the properties of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes used to manufacture organic energy storage devices, as for example supercapacitors, have been examined by considering a reduction of both monomer and supporting electrolyte concentrations during the anodic polymerization reaction. Thus, the excellent electrochemical properties of PEDOT films prepared using quiescent solutions have been preserved by applying controlled agitation to the polymerization process, even though the concentration of monomer and supporting electrolyte were reduced 5 and 2 times, respectively. For example, the charge stored for reversible exchange in a redox process, the electrochemical stability and the current productivity of films achieved using quiescent solutions have been preserved using a dynamic reaction medium in which the concentrations of monomer and supporting electrolyte are several times lower. The excellent properties of PEDOT electrodes prepared using optimized dynamic conditions have also been proved by constructing a symmetric supercapacitor. This energy storage device, which has been used as power source for a LED bulb, is rechargeable and exhibits higher charge-discharge capacities than supercapacitors prepared with electrodes derived from quiescent solutions. In addition of bring an efficacious procedure for preparing cost-effective PEDOT films with excellent properties, the proposed dynamic conditions reduce the environmental hazards of depleted reaction media.  相似文献   

3.
The ionic strength in supporting electrolyte solution had a significant influence on the electrochemical and electrocatalytic behaviors of myoglobin (Mb) in {HA/Mb}n films, which were assembled layer-by-layer on pyrolytic graphite (PG) electrodes with oppositely charged hyaluronic acid (HA) and Mb. The results of cyclic voltammetry (CV), quartz crystal microbalance (QCM), scanning electron microscopy (SEM), rotating disk voltammetry (RDV), and electrochemical impedance spectroscopy (EIS) showed that after incubation with testing solution at high concentration of salt (CKCl), the {HA/Mb}n films swelled and the film permeability was enhanced, suggesting that the external salt ions and accompanied water molecules in the exposure solution are incorporated into the films. Systematic investigation of the type and size effect of counterions in supporting electrolyte solution on the electrochemical responses for the {HA/Mb}n films and the positive shift of the formal potential (E degrees ') with CKCl suggest that it is cationic rather than anionic counterions that control the electrode process of {HA/Mb}n films at PG electrodes with electron hopping mechanism. The salt-induced swelling of {HA/Mb}n films facilitated the transportation of counterions, and then accelerated the electron transfer of Mb in the films with the underlying electrodes, making the film electrodes show better CV responses. The comparative study showed that only Mb layer-by-layer films assembled with "soft" and flexible polyions could demonstrate the salt-induced effect and that the {HA/Mb}n films showed better swelling capability than {PSS/Mb}n films (PSS = poly(styrenesulfonate)) due to the unique character of HA.  相似文献   

4.
The steady-state voltammetric behavior of truncated conical nanopore electrodes (20-200 nm orifice radii) has been investigated in low ionic strength solutions. Voltammetric currents at the nanopore electrode reflect both diffusive and migrational fluxes of the redox molecule and, thus, are strongly dependent on the charge of the redox molecule and the relative concentrations of the supporting electrolyte and redox molecule. In acetonitrile solutions, the limiting current for the oxidation of the positively charged ferrocenylmethyltrimethylammonium ion is suppressed at low supporting electrolyte concentrations, while the limiting current for the oxidation of the neutral species ferrocene is unaffected by the ionic strength. The dependence of the limiting current on the relative concentrations of the supporting electrolyte and redox molecule is accurately predicted by theory previously developed for microdisk electrodes. Anomalous values of the voltammetric half-wave potential observed at very small nanopore electrodes (<50 nm radius orifice radii) are ascribed to a boundary potential between the pore interior and bulk solution (i.e., a Donnan-type potential).  相似文献   

5.
In polymer films carrying an excess of fixed charge the electrostatic penalty to bring ions of same charge from the bathing electrolyte into the film sets a membrane potential (Donnan Potential) across the film-electrolyte interface. This potential is responsible for the ionic permselectivity observed in polyelectrolyte membranes. We have used electrochemical measurements to probe the dependence of the Donnan potential on the acid-base equilibrium in layer-by-layer self-assembled polyelectrolyte multilayers. The voltammperogram peak position of the Os(III)/Os(II) couple in self-assembled polyelectrolyte multilayers comprised of poly(allylamine) derivatized with Os(bpy)(2)PyCl+ and poly(vinylsulfonate) was recorded in solutions of increasing ionic strength for different assembly and testing solution pH. Protonation-deprotonation of the weak redox poly(allylamine) changes the fixed charge population in the as prepared (intrinsic) self-assembled redox polyelectrolyte multilayers. For films assembled in solutions of pH higher than the test solution pH, the Donnan plots (E(app) vs log C) exhibit a negative slope (anionic exchanger) while for films assembled at lower pH than that of the test solution positive slopes (cationic exchanger) are apparent. The ion exchange mechanism has been supported by complementary electrochemical quartz crystal microbalance. X-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy experiments demonstrated that the as prepared films have a memory effect on their protonation state during assembly, which leads to the observed dependence of the Donnan potential on the adsorption pH.  相似文献   

6.
Redox polyelectrolyte multilayers have been assembled with use of the layer-by-layer (LBL) deposition technique with cationic poly(allylamine) modified with Os(bpy)(2)ClPyCHO (PAH-Os) and anionic poly(styrene)sulfonate (PSS) or poly(vinyl)sulfonate (PVS). Different behavior has been observed in the formal redox potential of the Os(II)/Os(III) couple in the polymer film with cyclic voltammetry depending on the charge of the outermost layer and the electrolyte concentration and pH. The electrochemical quartz crystal microbalance (EQCM) has been used to monitor the exchange of ions and solvent with the external electrolyte during redox switching. At low ionic strength Donnan permselectivity of anions or cations is apparent and the nature of the ion exclusion from the film is determined by the charge of the topmost layer and solution pH. At high electrolyte concentration Donnan breakdown is observed and the osmium redox potential approaches the value for the redox couple in solution. Exchange of anions and water with the external electrolyte under permselective conditions and salt and water under Donnan breakdown have been observed upon oxidation of the film at low pH for the PAH-Os terminating layer. Moreover, at high pH values and with PVS as the terminating layer EQCM mass measurements have shown that cation release was masked by water exchange.  相似文献   

7.
Photoelectrochemical techniques have been employed in the investigation of p-type, n-type and intrinsic hydrogenated amorphous silicon(a-Si:H) films. The results show that the photocurrent response of the films strongly depends on the doped type electrolyte solution and the redox potential of the redox couples. Intrinsic a-Si:H film yields a stable photocurrent much higher than the p- and n-type ones. Based on the measurements, the energy levels and flatband potential of the intrinsic a-Si:H film are given, and the mechanisms of charge transfer in photoelectrochemical cell (PEC) are discussed.  相似文献   

8.
Electron transfer inside self-assembled monolayers made from complex redox-active oligophenylenevinylene molecular wires is examined by ultrafast cyclic voltammetry. Rate constants above 10(6) s(-1) are measured when the electroactive moieties are easily accessible to counterions from the electrolyte. These counterion movements are necessary to compensate the local charge created upon electron transfer. Conversely, if the redox center is buried within long hydrophobic diluents, the counterion movement towards the redox entity becomes rate limiting, thus drastically altering the rate magnitude and its physical meaning. This change in the mechanism is examined both for superexchange or when one electron-hopping step is involved.  相似文献   

9.
Polynuclear mixed‐valent films of cobalt oxide and cobalt hexacyanoferrate (CoOCoHCF) have been deposited on electrode surfaces from a solution of Co2+ and Fe(CN)63? ions by repetitive potential cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance measurements demonstrate the steady growth of modified film. The effect of type of monovalent cations as well as acidity of the supporting electrolyte on film growth and redox behavior of resulting film was investigated. In pure supporting electrolyte, electrochemical responses of modified electrode resemble with that of a surface immobilized redox couple. The hybrid film electrodes showed electrocatalytic activity toward oxidation of NADH, hydrazine and hydroxylamine. The feasibility of using our modified electrodes for analytical application was also explored.  相似文献   

10.
The development and testing is described of surfactant-sensitive electrodes in which the active element is a plasticised polymeric membrane containing a dissolved complex of a cationic and anionic surfactant. Electrodes made with poly(vinyl chloride) membranes plasticised with 40–60% tricresyl phosphate and containing cetyl trimethylammonium dodecyl sulphate are reasonably satisfactory for determining sodium dodecyl sulphate activities below and above the critical micelle concentration. A new class of membrane electrodes has been introduced in which ion-exchange groups are chemically bound to the ends of the poly(vinyl chloride) chains either through the use of an amine as chain transfer agent during polymerisation or by using the SO3? radical-anion as polymerisation initiator. The resulting electrodes are specific to anionic or to cationic surfactants but selectivity between different surfactants of the same charge sign is not high. The electrode lifetimes in micellar solutions are much higher than those of previously described electrodes because the electroactive material cannot be lost by solubilisation.  相似文献   

11.
The influence of pH and ionic strength on permselective transport in nanoporous opal films prepared from 440 nm silica spheres was investigated by cyclic voltammetry in aqueous and acetonitrile solutions. Three-layer opal films were deposited from a 1.5 wt % colloidal solution of silica spheres onto 25-microm-diameter Pt microdisk electrodes shrouded in glass. The films were chemically modified by immersing them in a dry acetonitrile solution of 3-aminopropyl triethoxysilane. When the surface amino groups of the modified opal films are protonated and there is little or no supporting electrolyte present in solution, the flux of cationic redox species through the opal membrane is blocked because of electrostatic repulsion. The permselectivity is pH-dependent and can be modulated by adjusting the Debye screening length within the nanopores of the opal by changing the ionic strength of the contacting solution.  相似文献   

12.
An electroanalytical sensor is proposed that is suitable for the detection of electroactive analytes present in gases or low-conductivity solvents where supporting electrolytes cannot be introduced. It consists of a porous working electrode supported on one surface of a cationic ion-exchange membrane (Nafion 417), the other surface of which is in contact with an electrolyte solution containing the counter and reference electrodes. Such an ion-exchange membrane replaces a conventional supporting electrolyte dissolved in the analyte sample and can be regarded as a solid polymer electrolyte (SPE) confined in the close neighbourhood of the working electrode. Alternative procedures followed for coating SPE membranes with various materials (Pt, Au, C or Hg) are described, together with the general properties displayed by the resulting composite electrodes in analyte-free gaseous or liquid media. These assemblies have been used as both voltammetric and amperometric sensors for electroactive analytes present in gases and in aqueous or organic solvents with no supporting electrolyte. The results indicate that their performance is similar to that expected on conventional electrodes, the only difference being a slightly lower degree of reversibility for the electrode processes investigated. Detection limits for some analytes were calculated and the use of SPE electrodes as sensors suitable for the continuous monitoring of electroactive analytes dispersed in gases or non-conductive liquids is reported. Preliminary attempts to use these assemblies for the determination of trace metals in low-conductivity solvents by anodic stripping voltammetry are discussed.  相似文献   

13.
The dependence of electron-transfer rate constants on the driving force for interfacial charge transfer has been investigated using n-type ZnO electrodes in aqueous solutions. Differential capacitance versus potential and current density versus potential measurements were used to determine the energetics and kinetics, respectively, of the interfacial electron-transfer processes. A series of nonadsorbing, one-electron, outer-sphere redox couples with formal reduction potentials that spanned approximately 900 mV allowed evaluation of both the normal and Marcus inverted regions of interfacial electron-transfer processes. All rate processes were observed to be kinetically first-order in the concentration of surface electrons and first-order in the concentration of dissolved redox acceptors. The band-edge positions of the ZnO were essentially independent of the Nernstian potential of the solution over the range 0.106-1.001 V vs SCE. The rate constant at optimal exoergicity was observed to be approximately 10(-)(16) cm(4) s(-)(1). The rate constant versus driving force dependence at n-type ZnO electrodes exhibited both normal and inverted regions, and the data were well-fit by a parabola generated using classical Marcus theory with a reorganization energy of 0.67 eV. NMR line broadening measurements of the self-exchange rate constants indicated that the redox couples had reorganization energies of 0.64-0.69 eV. The agreement between the reorganization energy of the ions in solution and the reorganization energy for the interfacial electron-transfer processes indicated that the reorganization energy was dominated by the redox species in the electrolyte, as expected from an application of Marcus theory to semiconductor electrodes.  相似文献   

14.
15.
Iron-substituted crown-type polyoxometalate (POM) [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) has been successfully immobilized onto glassy carbon electrode surfaces by means of the layer-by-layer (LBL) technique employing the cationic redox active dye, methylene blue (MB). The constructed multilayers exhibit pH-dependent redox activity for both the anionic POM and the cationic dye moieties, which is in good agreement with their solution behavior. The films have been characterized by alternating current impedance, atomic force microscopy, and X-ray photoelectron spectroscopy, whereby the nature of the outer layer within the assemblies was found to have an effect upon the film's behavior. Preliminary investigations show that the POM dye-based films show electrocatalytic ability toward the reduction of hydrogen peroxide, however, only when there is an outer anionic POM layer.  相似文献   

16.
Non-faradaic potentiometry has been plagued by a great many fundamental errors and a lack of conceptualization. Of greatest concern is the second Nernst equation hiatus. Potentiometry may be generally classified as faradaic and non-faradaic. The former deals with the redox reactions using the Nernst equation to explain the potential origin. The latter deals with the non-redox reactions using the Boltzmann and modified Boltzmann equations to explain the origin of electrode potential. Redox faradaic potentiometry has been well described in the textbooks. However, non-faradaic potentiometry has been almost completely neglected in the literature. Many well-known electrodes, such as the pH glass electrode, common reference electrodes, and ion selective electrodes (ISE) have been mistakenly interpreted as redox reactions or ion exchange reactions. New theories and experimental results show their mechanisms to be non-faradaic in nature. Furthermore, the reaction mechanisms for ISE have been confused in textbooks with redox reactions and the Nernst equation. The ISE potentials originating from adsorption of ions or charged particles based on surface charge density will be explained using the double and counterion triple layers concept. The new counterion triple layer concept may be applied to the potential development of sensors. The reason for a new concept, theory, or mechanism is to better explain the phenomena. Examples will be given of how our new concept explains the capacitor, counterion triple layer, surface adsorbed layers interactions, and the interface structure. We will also discuss the new sensor development based on the new adsorption concept. For the first time a new type of Ag/AgCl reference electrode for non-faradaic potentiometry will be presented, one without a liquid junction and with a Pt wire instead of a salt bridge. They will help open up a new horizon for electrochemical sensor research and may be used under unusual conditions, such as high temperature and high pressure, stirring, etc.  相似文献   

17.
用预交换法和掺入法将某些荷阳电物(NR, MB)与荷阴电物[IC, Fe(CN)~6^3-]吸附在蒙脱石膜中制备化学修饰电极(CME)。对不同电性的吸附物, 用预交换法制备的CME在支持电解质溶液中显示不同的伏安响应。被吸附物在蒙脱石膜内的电活性浓度(c*)和总浓度(c~t)之比值较小, 说明被吸附物中只有小部分表现有电化学特性。X衍射实验表明荷阳电的吸附物可能通过离子交换吸附而嵌入蒙脱石层间。吸收光谱实验亦表明荷阳电物与蒙脱石间有强的化学吸附作用。根据蒙脱石中各种不同的吸附位置, 讨论了被吸附物对电化学响应的不同贡献。  相似文献   

18.
Redox reactions of oxygen have been considered critical in controlling the electrochemical properties of lithium‐excessive layered‐oxide electrodes. However, conventional electrode materials without overlithiation remain the most practical. Typically, cationic redox reactions are believed to dominate the electrochemical processes in conventional electrodes. Herein, we show unambiguous evidence of reversible anionic redox reactions in LiNi1/3Co1/3Mn1/3O2. The typical involvement of oxygen through hybridization with transition metals is discussed, as well as the intrinsic oxygen redox process at high potentials, which is 75 % reversible during initial cycling and 63 % retained after 10 cycles. Our results clarify the reaction mechanism at high potentials in conventional layered electrodes involving both cationic and anionic reactions and indicate the potential of utilizing reversible oxygen redox reactions in conventional layered oxides for high‐capacity lithium‐ion batteries.  相似文献   

19.
Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.  相似文献   

20.
We report the results of X-ray absorption spectroscopy studies on electrochemically deposited iridium oxide films. The emphasis of the study is the correlation of X-ray derived structural data with electrochemically controlled charge state. Data were acquired for films subject to redox cycling in neutral and alkaline aqueous media. In both cases, cyclic voltammetric responses show two redox couples, coulometrically of roughly equal magnitude. Assays of the iridium population (based on the iridium L(3) absorption edge amplitude) and the charge injected (based on integration of the voltammetric response) show that overall an average of ca. one electron per iridium atom is transferred. The absorption edge shifts indicate that the formal charge on the iridium changes, on average, from ca. 3.5+ to ca. 4.5+ across the entire process. EXAFS-derived changes in mean Ir-O distance and their mean square variation have been interpreted in terms of a two-site model, in which the two types of site have distinct redox potentials. Variations of local structure and disorder with potential are discussed and a generic model for structural disorder (parameterized via Debye-Waller factor) with diagnostic capability is developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号