首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It is well known that the antioxidant activity of some species in homogenous solutions may not be the same as that in heterogeneous media. This environment dependence is the reason for investigating ascorbic acid antioxidant activity in surfactant solutions. In our study we have investigated the kinetics of atmospheric oxidation and electrochemical oxidation of ascorbic acid in aqueous solutions of the four surfactants: SDS, AOT (anionic), TRITON-100 (nonionic), and CTAB (cationic). For each surfactant the concentrations below and above CMC were investigated. As expected, a general trend in the atmospheric oxidation rate changes in the following manner: the micellar solution of nonionic surfactant shows a faster oxidation rate than that of the anionic surfactant, and the cationic surfactant an even higher one. The more subtle effects were observed with each surfactant concentration change. The influence of the surfactants on the electrochemical behavior of ascorbic acid was also studied. A general conclusion emerging from our investigation is that surfactants shift the ascorbic acid oxidation potential and change the peak current value. This phenomenon is due mainly to the surfactant film formed at the electrode/solution interface.  相似文献   

2.
Linear sweep voltammetric behaviour of 9-β- -ribofuranosyluric acid 5′-monophosphate (UA-9R-5′-P) has been studied in phosphate buffers of pH 3.0 and 7.0 at the pyrolytic graphite electrode in aqueous and micellar media. At pH 3.0 in the presence of non-ionic and anionic surfactants, UA-9R-5′-P exhibited a single well-defined 2e, 2H+ oxidation peak, whereas in the presence of cationic surfactant (CTAB) the oxidation peak Ia showed a tendency to split into two peaks indicating that the 2e, 2H+ oxidation of UA-9R-5′-P in peak Ia reaction occurs in two 1e steps. The effect of cationic surfactant at pH 3.0 is explained on the basis of hydrophobic penetration of cationic species in cationic micelles. The products of electrode reaction in micellar medium were found as alloxan, urea and ribosyl phosphate at pH 3.0 and ribose, allantoin and 5-hydroxyhydantoin 5-carboxamide at pH 7.0 and were similar to those observed in aqueous media.  相似文献   

3.
Summary.  The electrochemical behaviour of chlorpromazine has been examined in phosphate buffers in aqueous as well as micellar media at a pyrolytic graphite electrode surface. Two oxidation peaks were obtained in linear sweep voltammetry of chlorpromazine. The first peak corresponds to the formation of the cationic free radical, which on further 1e-oxidation gives a dication. The spectroscopic changes and kinetics of the cationic free radical and dication species generated during electrooxidation of chlorpromazine were investigated in both media. The decay of the dication was studied chronoamperometrically and was found to follow first-order kinetics with a half-life of ∼25 ms. Surfactants affect both E p and i p values. The anionic surfactant SDS has been found to catalyze the reaction of the free radical cation and the dication.  相似文献   

4.
The chloromethylation reaction of 2-chloroethylbenzene was performed successfully by micellar catalysis in the biphasic oil/water system. The effects of anionic, cationic and non-ionic surfactants on the reaction were compared. The mechanism of chloromethylation reaction and the mechanism of micellar catalysis were investigated. The results show that the micellar catalysis is an effective way to realize the chloromethylation of 2-chloroethylbenzene, and the cationic surfactant shows the most effectiveness. The longer the hydrophobic chain of the cationic surfactant is, the better the catalysis effect will be, and the addition of inorganic electrolyte into the aqueous phase can markedly promote the catalysis effect.  相似文献   

5.
Solubilization and interaction of azo-dye light yellow (X6G) at/with cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) was investigated spectrophotometricaly. The effect of cationic micelles on solubilization of anionic azo dye in aqueous micellar solutions of cationic surfactants was studied at pH 7 and 25 degrees C. The binding of dye to micelles implied a bathochromic shift in dye absorption spectra that indicates dye-surfactant interaction. The results showed that the solubility of dye increased with increasing surfactant concentration, as a consequence of the association between the dye and the micelles. The binding constants, K(b), were obtained from experimental absorption spectra. By using pseudo-phase model, the partition coefficients between the bulk water and surfactant micelles, K(x), were calculated. Gibbs energies of binding and distribution of dye between the bulk water and surfactant micelles were estimated. The results show favorable solubilization of dye in CTAB micelles.  相似文献   

6.
The electroreduction of p-nitrosodiphenylamine (p-NDPA) in an alkaline aqueous solution containing cetyltrimethylammonium bromide (CTAB) as a cationic surfactant was investigated by polarography, cyclic and rotating disc voltammetry. It was found that the reduction of p-NDPA in cationic micellar systems takes place by the ECE mechanism, and, compared to the reduction of the same compound in a homogeneous water solution, has a somewhat lower rate of the overall electrode reaction. The lower reaction rate of p-NDPA reduction in micellar medium is probably due to three main factors: solubilization of p-NDPA in CTAB micelles, adsorption of monomeric surfactant species at the electrode surface and a lower rate of the base catalyzed dehydration reaction (C-step) in the micellar system.  相似文献   

7.
Micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are two kinds of electrokinetic capillary chromatography (EKC), which are characterized of high solubilization capacity and separation efficiency. In our previous work, some polar organic compounds and hydrophobic neutral compounds were separated successfully by EKC1-3. In this paper, these methods were used for separating six pyridoncarboylxic acid derivatives with similar structures. T…  相似文献   

8.
The thermal and operational stabilities ofDesulfovibrio gigas periplasmic hydrogenase were studied at 30 and 50°C in aqueous and micellar media. At the lower temperature the hydrogenase was more stable in reverse micelles of a cationic surfactant. No inactivation was detected over almost 16 d of incubation of the hydrogenase in the reverse micellar solution, during which the enzyme lost around 50% of the initial enzymatic activity in the aqueous solution. At 50°C the hydrogenase was more stable in aqueous medium, because of the changes that occur with the temperature in the organic phase—precipitation of surfactant and solvent evaporation. It was found that only micellar solutions of this enzyme can be repeatedly used, since the hydrogenase is inactivated after the first cycle of oxireduction in aqueous medium. The effect of glycerol and the electron carrier methylviologen as stabilizers of hydrogenase activity was also investigated. The results are interpreted on the grounds of hydrogenase and surfactant electrostatic properties.  相似文献   

9.
The reaction Fe(CN)5(4‐CNpy)3− + S2O82− (4‐CNpy=4‐cyanopyridine) was studied in aqueous salt solutions in the presence of several electrolytes as well as in anionic, cationic, and nonionic surfactant solutions. In aqueous salt solutions the noncoulombic interactions seem to be important in determining the positive salt effects observed. The salting effects are influencing the activity coefficients of any participant in the reaction, including those ion pairs which can be formed between the anionic reagents and the cations which come from the added salts. The changes in surfactant concentration in anionic and nonionic surfactant solutions do not affect the reaction rate, which is similar to that in pure water at the same ionic strength. In cationic micellar solutions an increase in the rate constant compared to that in pure water is found; the reaction rate decreasing when the surfactant concentration increases. The kinetic trends can be explained assuming that the reagents are totally bound to the micelles and, therefore, an increase in the surfactant concentration results in a decrease in the reagent concentrations at the micellar phase and thus in a decrease in the observed rate constant. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet: 31: 229–235, 1999  相似文献   

10.
The absorption and fluorescence spectral characteristics of some biologically active indoles have been studied as a function of acidity and basicity (H_/pH/H(o)) in cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium dodecylsulphate, SDS) and aqueous phases at a given surfactant concentration. The prototropic equilibrium reactions of these probes have been studied in aqueous and micellar phases and apparent excited state acidity constant (pK(a)(*)) values are calculated. The probes show formation of different species on changing pH. Various species present in water, CTAB and SDS have been identified and the equilibrium constants have been determined by Fluorimetric Titration method. The fluorescence spectral data suggest the formation of oxonium ion through the excited state proton transfer reaction in highly acidic media and formation of photoproducts due to the base catalyzed auto-oxidative reaction in basic aqueous solutions. Variations in the apparent pK(a)(*) value have been observed in different media. The change in the apparent pK(a) values depends upon the solubilising power of the micelles, as well as on the location of the protonating site in the molecule. The observation about increase in pK(a)(*) values in SDS and decrease in CTAB compared to pure water for various equilibria is consistent with the pseudophase ion-exchange (PIE) model.  相似文献   

11.
To investigate the osmotic pressure of non-ionic and ionic surfactant solutions in the micellar and microemulsion regions, a potential of mean force including hard-core repulsion, van der Waals attraction and electric double layer repulsion is proposed to describe the interactions between micelles and between microemulsions. Both van der Waals attraction and electric double layer repulsion are represented using Yukawa tails. The explicit analytical expression of osmotic pressure derived from the first-order mean spherical approximation is implemented by accounting for the Donnan membrane effect. The proposed theory has been applied to micelle solutions of the non-ionic surfactant, n-dodecyl hexaoxyethylene monoether, the cationic surfactant, cetylpyridinium chloride, the anionic surfactant, sodium dodecyl sulfate, and spherical oil-in-water microemulsion system. Successful comparison is made between the proposed theory and the experimental osmotic pressure data for the studied surfactant solutions. Theoretical results show that the long-range electric double layer repulsion dramatically influences the osmotic pressure of both cationic and anionic surfactant solutions in the micellar region. The regressed model parameters such as effective micelle diameter, the mean aggregation number and effective micellar charge are in good agreement with those from static light scattering studies in the literature.  相似文献   

12.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

13.
The spontaneous hydrolysis of phenyl chloroformate was studied in various anionic, nonionic, zwitterionic, and cationic aqueous micellar solutions, as well as in mixed anionic–nonionic micellar solutions. In all cases, an increase in the surfactant concentration results in a decrease in the reaction rate and micellar effects were quantitatively explained in terms of distribution of the substrate between water and micelles and the first‐order rate constants in the aqueous and micellar pseudophases. A comparison of the kinetic data in nonionic micellar solutions to those in anionic and zwiterionic micellar solutions makes clear that charge effects of micelles is not the only factor responsible for the variations in the reaction rate. Depletion of water in the interfacial region and its different characteristics as compared to bulk water, the presence of high ionic concentration in the Stern layer of ionic micelles, and differences in the stabilization of the initial state and the transition state by hydrophobic interactions with surfactant tails can also influence reactivity. The different deceleration of the reaction observed in the various micellar solutions studied was discussed by considering these factors. Synergism in mixed‐micellar solutions is shown through the kinetic data obtained in these media. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 445–451, 2002  相似文献   

14.
The electrochemical reduction of avarone (Q), an antitumor sesquiterpenoid quinone, was investigated at various pH in aqueous ethanol containing a cationic surfactant, cetyltrimethylammonium bromide (CTAB) by cyclic and rotating disc electrode voltammetry, using a glassy carbon electrode. Comparison of the electrochemical reduction of Q in presence of CTAB with the same process in a homogeneous water + ethanol solution shows an anodic shift of the reduction potential in the presence of CTAB; at pH > 9.5 and in presence of CTAB, two well-defined reduction peaks are observed, thus confirming one-electron reduction of Q, whereby the intermediate radical-anion is stabilized by the cationic micellar medium. The electrochemical oxidation of BNAH was investigated by cyclic voltammetry, and the anodic shift of the peak potential in presence of CTAB was observed. From the electrochemical behaviour of Q and BNAH, and the kinetics of the oxidation of BNAH with Q, it is suggested that the reaction takes place in two successive one-electron transfer steps. The application of the Marcus theory gives additional proof that, in this case, the first electron transfer is the rate determining step.  相似文献   

15.
The migration behaviour of isoquinoline, quinoline, and methyl derivatives of quinoline in different capillary electrophoretic modes has been systematically investigated. Optimised separation conditions were established by varying the key parameters (solvent, pH, temperature, surfactant concentration, core phase) for aqueous and non‐aqueous capillary zone electrophoresis (NACE), micellar electrokinetic chromatography (MEKC) with anionic or non‐ionic micelles (SDS, Brij 35), and microemulsion electrokinetic chromatography (MEEKC) with charged or uncharged microemulsion droplets. A separation of all quinolines could be achieved by MEEKC with charged droplets, by MEKC or by formamide‐based NACE. Comparing the separations with respect to separation selectivity, substantial changes in migration order could be observed between the different techniques. Regarding separation efficiency, the number of theoretical plates and limits of detection (LOD) have been compared. The best LODs were achieved using SDS as surfactant in MEKC, followed by MEEKC.  相似文献   

16.
The alkaline hydrolysis of curcumin was studied in three types of micelles composed of the cationic surfactants cetyl trimethylammonium bromide (CTAB) and dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS). At pH 13, curcumin undergoes rapid degradation by alkaline hydrolysis in the SDS micellar solution. In contrast, alkaline hydrolysis of curcumin is greatly suppressed in the presence of either CTAB or DTAB micelles, with a yield of suppression close to 90%. The results from fluorescence spectroscopic studies reveal that while curcumin remains encapsulated in CTAB and DTAB micelles at pH 13, curcumin is dissociated from the SDS micelles to the aqueous phase at this pH. The absence of encapsulation and stabilization in the SDS micellar solution results in rapid hydrolysis of curcumin.  相似文献   

17.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

18.
The bebaviour of several different micelar systems (anionic, cationic and non-ionic) on the fluorescence of quinolizinium salts is studied. Important factors, such as pH and ionic strength that influence fluorescence parameters, are discussed. Fourteen quinolizinium salts (benzo and methyl derivatives) are examined as fluorescent probes in micellar media. All of them showed a marked increase of fluorescence intensity when sodium dodecyl sulfate solutions of critical micelle concentration (CMC) are added. The presence of non-ionic surfactants did not change the fluorescent emission of the probes. The emission intensity is much decreased when N-cetyl-N,N,N- trimethylammonium bromide concentrations are above the CMC. Changes in pH ido not significantly affect the fluorescence intensity of the benzo derivatives. Increasing the ionic strength decreases the fluorescence. For 9-cyanobenzo[a]phenanthro [9,10-g] quinolizinium chloride, the spectrum changes when the surfactant concentration is high than the CMC thereforre this compound is considered to be a good fluorescent probe in icell  相似文献   

19.
The aggregation of a hydrophilic-hydrophobic diblock copolymer consisting of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(methyl methacrylate) (PMMA) in aqueous solution has been investigated by small-angle neutron scattering. This polybase is extensively protonated at low pH and forms micelles with a dense core of PMMA and a diffuse coronal layer of cationic PDMAEMA. Addition of salt induced micellar growth, brought about by charge screening and more efficient packing of the chains. As a result, the aggregation number increased from 8 up to 31. A similar effect was observed at low concentrations of an anionic surfactant, sodium dodecyl sulfate (SDS) since the net cationic charge in the hydrophilic coronal layer was reduced due to surfactant binding. However, at higher surfactant concentrations, a drastic structural reorganization occurred, as the PMMA became solubilized into the SDS micellar cores and the PDMAEMA chains interacted with the surfactant micelles, resulting in a "pearl-necklace" structure. The presence of the cationic polyelectrolyte significantly increased the population of SDS micelles by effectively lowering the critical micelle concentration of this anionic surfactant.  相似文献   

20.
The interaction of a hydrophobically modified anionic polymer (PMAOVE) with a cationic surfactant (DTAB) was studied using a multi-technique approach: turbidity, surface tension, and viscosity measurements, as well as EPR (5-doxyl stearic acid) and fluorescence (pyrene) probe techniques were used. In the investigated pH range (4-10), the cationic surfactant headgroups interact with the anionic carboxylic groups of the polymer backbone. In addition, nonpolar interactions of the surfactant chains with the n-octyl chains of PMAOVE stabilize the PMAOVE-DTAB complexes. Charge neutralization of the anionic polymer by the cationic surfactant leads to precipitation of the PMAOVE-DTAB complex at a certain DTAB concentration range. Further addition of DTAB causes a charge reversal of the complex and, subsequently, resolubilization of the precipitate. At an acidic pH (pH = 4), a second precipitation was observed, which is probably caused by conformational changes in the PMAOVE-DTAB complex. This second precipitate can be resolubilized by further addition of surfactant. At a neutral and basic pH, this second precipitation is absent. EPR analysis indicates that the surfactants form an ordered structure at the extended polymer chain at a neutral and basic pH, whereas at an acidic pH, a less ordered surfactant layer is formed on the coiled polymer with more hydrophobic microdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号