首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C2 and C3 alkanes are selectively adsorbed from mixtures over the corresponding alkenes on the zeolite imidazolate framework ZIF-7 through a gate-opening mechanism. As a result, the direct production of the pure alkene upon adsorption and the pure alkane upon desorption in packed columns is possible. Herein, a detailed investigation of the step-wise adsorption and separation of alkanes and alkenes is presented, together with a rigorous performance assessment. A molecular picture of the gate-opening mechanism underlying the unprecedented selectivity towards alkane adsorption is proposed based on DFT calculations and a thermodynamic analysis of the adsorption-desorption isotherms.  相似文献   

2.
Self-diffusion measurements with methane and carbon dioxide adsorbed in the Zeolitic Imidazolate Framework-8 (ZIF-8) were performed by 1H and 13C pulsed field gradient nuclear magnetic resonance (PFG NMR). The experiments were conducted at 298 K and variable pressures of 7 to 15 bar in the gas phase above the ZIF-8 bed. Via known adsorption isotherms these pressures were converted to loadings of the adsorbed molecules. The self-diffusion coefficients of carbon dioxide measured by PFG NMR are found to be independent of loading. They are in good agreement with results from molecular dynamic (MD) simulations and resume the trend previously found by IR microscopy at lower loadings. Methane diffuses in ZIF-8 only slightly slower than carbon dioxide. Its experimentally obtained self-diffusion coefficients are about a factor of two smaller than the corresponding values determined by MD simulations using flexible frameworks.  相似文献   

3.
The application of interference microscopy (IFM) and infrared microscopy (IRM) to monitoring transient concentration profiles during uptake and release of guest molecules in nanoporous materials has opened a novel technique for diffusion studies with adsorbed molecules. For the first time, the coefficients of transport diffusion and the surface permeabilities have become accessible by direct observation under non-equilibrium conditions. The examples presented in this communication include diffusion and permeation measurements with zeolites of the ferrierite type and with metal-organic frameworks (MOFs) of type ZIF-8  相似文献   

4.
A fast and efficient mechanosynthesis (ball-milling) method of preparing amorphous zeolitic imidazolate frameworks (ZIFs) from different starting materials is discussed. Using X-ray total scattering, N(2) sorption analysis, and gas pycnometry, these frameworks are indistinguishable from one another and from temperature-amorphized ZIFs. Gas sorption analysis also confirms that they are nonporous once formed, in contrast to activated ZIF-4, which displays interesting gate-opening behavior. Nanoparticles of a prototypical nanoporous substituted ZIF, ZIF-8, were also prepared and shown to undergo amorphization.  相似文献   

5.
A flexible metal-organic framework of 1a Cu(FMA)(4,4'-Bpe)0.5(FMA=fumarate; 4,4'-Bpe=trans-bis-(4-pyridyl)ethylene) that exhibits guest molecule-controlled gate-opening adsorption has been reported, in which the flexible pores can be enlarged by CO_2 molecules rather than CH_4 and N_2 under a certain gate-opening pressure. The CO_2 uptake can be sharply improved from 6.85cm~3 g~(–1) at 0.60 atm to 33.7 cm~3 g~(–1) at 1 atm due to the gate-opening effect, thus resulting in the notably enhanced adsorption selectivities for CO_2/CH_4(32:1, v/v) and CO_2/N_2(48:1, v/v) separations at room temperature.  相似文献   

6.
A model able to describe the effect of structural changes in the adsorbent or adsorbed phase during the dynamic (breakthrough) separation of mixtures on metal-organic frameworks (MOFs) is presented. The methodology is exemplified for a few pertinent case studies: the separation of xylene isomers and ethylbenzene on the flexible MOF MIL-53 and the rigid MOF MIL-47. At low pressures, no preferential adsorption of any component occurs on both MOFs. Contrarily, at higher pressures separation of ethylbenzene (EB) from o-xylene (oX) occurs on MIL-53 as a result of the breathing phenomenon within the MIL-53 structure. The increase in selectivity, starting from the gate-opening pressure, could be modeled by using a pressure-dependent saturation capacity for the most strongly adsorbed component oX. In the separation of m-xylene (mX) from p-xylene (pX) on the rigid MOF MIL-47, separation at higher pressures is a result of preferential stacking of pX. Here, the selectivity increases once the adsorption of pX switches from a single to a double file adsorption. By implementing a loading dependent adsorption constant for pX, the different unconventional breakthrough profiles and the observed selectivity profile on MIL-47 can be simulated. A similar methodology was used for the separation of EB from pX on MIL-47, where the separation is a result from steric constraints imposed onto the adsorption of EB.  相似文献   

7.
Modification of the external surfaces of metal–organic frameworks offers a new level of control over their adsorption behavior. It was previously shown that capping of MOFs with ethylenediamine (EDA) can effectively retain small gaseous molecules at room temperature. Reported here is a temperature-induced variation in the capping-layer gate-opening mechanism through a combination of in situ infared experiments and ab initio simulations of the capping layer. An atypical acceleration and increase in the loading of weakly adsorbed molecules upon raising the temperature above room temperature is observed. These findings show the discovery of novel temperature-dependent kinetics that goes beyond standard kinetics and suggest a new avenue for tailoring selective adsorption by thermally tuning the surface barrier.  相似文献   

8.
In comparison with the fast development of binary mixture separations, ternary mixture separations are significantly more difficult and have rarely been realized by a single material. Herein, a new strategy of tuning the gate-opening pressure of flexible MOFs is developed to tackle such a challenge. As demonstrated by a flexible framework NTU-65, the gate-opening pressure of ethylene (C2H4), acetylene (C2H2), and carbon dioxide (CO2) can be regulated by temperature. Therefore, efficient sieving separation of this ternary mixture was realized. Under optimized temperature, NTU-65 adsorbed a large amount of C2H2 and CO2 through gate-opening and only negligible amount of C2H4. Breakthrough experiments demonstrated that this material can simultaneously capture C2H2 and CO2, yielding polymer-grade (>99.99 %) C2H4 from single breakthrough separation.  相似文献   

9.
In this paper, molecularly imprinted polymer (MIP) of isoniazid is synthesized through thermal radical copolymerization of metharylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of isoniazid template molecules. A novel flow injection chemiluminescence sensor for isoniazid determination is developed by packing the isoniazid-MIP into the flow cell as recognition elements. Isoniazid could be selectively adsorbed by the MIPs and the adsorbed isoniazid was sensed by its great enhancing effect on the weak CL reaction between luminol and periodate which were mixed in the flow cell. The enhanced CL intensity is linear in the range 2x10(-9) to 2x10(-7) g/mL and the detection limit is 7x10(-10) g/mL (3sigma) isoniazid with a relative standard deviation 2.8% (n=9) for 8x10(-8) g/mL. The sensor is reversible and reusable. It has a great improvement in sensitivity and selectivity for CL analysis. As a result, the sensor has been successfully applied to determination of isoniazid in human urine. At the same time, the binding characteristic of the polymer to isoniazid was evaluated by batch method and the dynamic method, respectively.  相似文献   

10.
Kinetics of the reaction of ethylene with oxygen adsorbed on a silver film was studied by a static method at 333 K, initial surface coverage with oxygen close to 0.8 and initial ethylene pressures of 1.1 and 4.4 Pa. The ethylene oxide selectivity was found to increase with increasing ethylene pressure.  相似文献   

11.
ZIF-8 is a zeolitic imidazole-based metal-organic framework with large cavities interconnected by narrow windows. Because the small size of the windows, it allows in principle for molecular sieving of gases such as H(2) and CH(4). However, the unexpected adsorption of large molecules on ZIF-8 suggests the existence of structural flexibility. ZIF-8 flexibility is explored in this work combining different experimental techniques with molecular simulation. We show that the ZIF-8 structure is modified by gas adsorption uptake in the same way as it is at a very high pressure (i.e., 14,700 bar) due to a swing effect in the imidazolate linkers, giving access to the porosity. Tuning the flexibility, and so the opening of the small windows, has a further impact on the design of advanced molecular sieving membrane materials for gas separation, adjusting the access of fluids to the porous network.  相似文献   

12.
The inclusion behavior of gaseous guest molecules in a solid apohost, an orthogonal anthracene-bis(resorcinol)tetraol (1), was investigated with a quartz-crystal microbalance (QCM). Compound 1 forms crystals composed of molecular sheets bound together by an extensive hydrogen-bonded network. An apohost of 1 was cast onto a QCM and the binding of gaseous guest molecules was followed as a function of time by observing the decrease in the oscillation frequency, which is directly related to the increase in mass. Ethyl acetate and methyl ethyl ketone were significantly included into the apohost, whereas benzene and cyclohexane were simply adsorbed onto the surface of the solid; all these guests have similar vapor pressures at 25 degrees C. On the other hand, a host analogue 2, a tetramethoxy derivative of 1, barely included these guest molecules. The inclusion amount and the rate of inclusion of ethyl acetate or methyl ethyl ketone showed a drastic increase above a threshold concentration of guests in the gas phase. Thus, the structure of the apohost changed cooperatively in order to bind guest molecules above the threshold guest concentration. This cooperativity of the binding behavior was kinetically analyzed.  相似文献   

13.
A stainless steel fiber was coated with a gate-opening controlled metal-organic framework ZIF-7 via a sol-gel method and applied to the solid-phase microextraction of aldehydes (hexanal, heptanal, octanal, nonanal, decanal) from exhaled breath by lung cancer patients. The effects of temperature and time on the sorption and desorption were optimized. Under optimum condition, the modified fiber displays enrichment factors (typically ranging from 300 to 10,000), low limits of detection (0.61–0.84 μg L?1), and wide linear ranges of hexanal, heptanal (5–500 μg L?1) and octanal, nonanal, decanal (10–1000 μg L?1). The high extraction capability for aldehydes is thought to result from (a) the combined effects of the large surface area and the unique porous structure of the ZIF-7, (b) the hydrophobicity and gate-opening effect of the sorbent, (c) the high selectivity of the window, and (d) the presence of unsaturated metal-coordination sites. The coated fiber is thermally stable and can be re-used >150 times. The relative standard deviation (RSD) for six replicate extractions using a single fiber ranged from 1.4–15.3% for intra-day and 2.4–16.1% for inter-day. The fiber-to-fiber reproducibility for three fibers prepared in parallel was in the range of 2.4–12.6% (RSD). The method was applied to the extraction of aldehydes from real samples and to the quantitation by gas chromatography. Recoveries from spiked samples ranged from 84 to 113%.
Graphical abstract A metal-organic framework ZIF-7 coated stainless steel fiber was prepared via sol-gel method. The self-made fiber was applied in the solid phase microextraction of aldehydes from exhaled breath of lung cancer patients.
  相似文献   

14.
ZIF-8(沸石咪唑酯骨架结构材料)是一种金属有机物骨架结构材料,因其极高的比表面积、出色的热稳定性而被广泛应用于各种性质研究中。ZIF-8通过传统的水热法在甲醇溶液中合成,其颗粒尺寸约为250nm,形貌为菱形十二面体。研究发现,合成的ZIF-8材料具有良好的热稳定性及相当大的比表面积。将其掺杂进液晶中会增强液晶的电-光性能,增强效果与掺杂浓度有关。在向列相液晶4-氰基-4'-戊基联苯(5CB)中,ZIF-8可以吸附杂质离子,抑制屏蔽效应,最终使液晶驱动电压降低,响应加快。在掺杂浓度为0.05%(w,质量分数)时,液晶体系的电-光性能改善最明显,阈值电压(Vth)最小达到0.92 V,饱和电压(Vsat)达到1.31 V,响应时间仅为10.04 ms。而当掺杂浓度大于0.05%(w)时,ZIF-8在液晶盒中发生团聚,影响液晶分子的有序排布,同时吸附杂质离子减少,不利于液晶电-光性能的改善。  相似文献   

15.
The adsorption of selected poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) tri-block copolymers on synthetic clay particles (laponite) has been investigated. The adsorbed amount and distribution of polymer was determined as a function of relative block composition and size, using the technique of contrast variation small-angle neutron scattering. The pluronic molecules appear to adsorb via a preferential segregation of hydrophobic PPO segments at the surface, with hydrophilic PEO segments dangling into solution. The effect of the PPO segments is substantial with large increases in adsorbed amount and layer thickness as the anchor fraction decreases/PEO chain length increases. This is in direct contrast to the behavior observed for PEO homopolymer adsorption (of much higher molecular weights) where the adsorbed amount and layer thickness are smaller and change little with molecular weight.  相似文献   

16.
Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, −3, −4 and −7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 Å for IFP-1, 3.1 Å for IFP-3) and smaller (2.1 Å for IFP-7, 1.7 Å for IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H2 or D2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H2/D2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S≈2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.  相似文献   

17.
We report the reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4, [Zn(Im)(2)]). This occurs irrespective of pore occupancy and takes place via a novel high pressure phase (ZIF-4-I) when solvent molecules are present in the pores. A significant reduction in bulk modulus upon framework evacuation is also observed for both ZIF-4 and ZIF-4-I.  相似文献   

18.
The separation of ethane/ethylene mixture by using metal-organic frameworks (MOFs) as adsorbents is strongly associated with the pore size-sieving effect and the adsorbent-adsorbate interaction. Herein, solid-state NMR spectroscopy is utilized to explore the host-guest interaction and ethane/ethylene separation mechanism on zeolitic imidazolate frameworks (ZIFs). Preferential access to the ZIF-8 and ZIF-8-90 frameworks by ethane compared to ethylene is directly visualized from two-dimensional 1H-1H spin diffusion MAS NMR spectroscopy and further verified by computational density distributions. The 1H MAS NMR spectroscopy provides an alternative for straightforwardly extracting the adsorption selectivity of ethane/ethylene mixture at 1.1∼9.6 bar in ZIFs, which is consistent with the IAST predictions.  相似文献   

19.
In this paper, atomic force microscopy (AFM) has been used to investigate the morphology of monolayers of the amphiphilic rod-coil diblock molecule (EO7OPV) containing oligo(phenylene vinylene) dimer (OPV) and poly(ethylene oxide) (PEO) as well as the morphology of mixed monolayers of EO7OPV and palmitic acid (PA) deposited onto mica by the Langmuir-Blodgett technique. At surface pressures higher than 3 mN/m, EO7OPV forms regular-shaped aggregates with a monomolecular layer structure, where the hydrophilic PEO blocks are adsorbed onto the mica substrate and the hydrophobic OPV blocks form an ordered crystalline OPV layer on the top of the PEO layer through the strong pi-pi stacking interaction. In the mixed LB monolayers of EO7OPV and PA, the phase separation occurs. At a certain mixed ratio, EO7OPV molecules form rodlike domains with regular shape and uniform size at surface pressures higher than 3 mN/m. With the increase of the molar fraction of PA, the rodlike domains consisting of EO7OPV are elongated. The length of the rodlike domains can be tuned easily in a large range by altering the molar ratio of EO7OPV and PA. In addition, the rodlike domains are oriented to specific directions, corresponding to the directions of the potassium ion array on the mica surface having 6-fold symmetry. We demonstrate the possible formation mechanism and the elongation origin of rodlike domains in mixed LB monolayers and propose the two-step formation process of oriented rodlike domains deposited onto the mica substrate.  相似文献   

20.
Dilatational viscoelasticity of adsorbed and spread films of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer at the air-water interface is studied by the capillary waves and oscillating barrier techniques. At the surface pressure below 10 mN/m, dynamic surface properties of these films coincide with those of poly(ethylene oxide). At higher surface pressures, the results obtained indicate the desorption of poly(propylene oxide) segments from the monolayer and their interaction with poly(ethylene oxide) segments in an aqueous phase. At a surface pressure close to 19 mN/m, the behavior of adsorbed and spread poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) films becomes different. The real part of dynamic surface elasticity of spread films tends toward its maximum value (20 mN/m) and, upon further compression, films begin to dissolve. At the same time, the surface elasticity of adsorbed films decreases nearly twofold upon the achievement of the maximum value that testifies the formation of looser structure of the surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号