首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reflection index of an unsteady moving magnetized plasma slab irradiated by an electromagnetic wave is investigated. The direction of the external magnetic field is parallel to the plasma surface and the electromagnetic wave is normally incident on a gas slab and produces the plasma. This gas slab is being ionized by another source and the density of the mentioned unsteady plasma increases with time. The effects of the density growth rate, velocity, thickness of the plasma slab, and the external magnetic field on the reflection index are simulated.  相似文献   

2.
Hong Wei Yang  Yan Liu 《Optik》2012,123(4):371-375
In this paper, a model for calculating the reflection and absorption powers of electromagnetic wave (EM wave) in nonuniform magnetized plasma slab is given out based on layer propagation theory. The effects of various plasma parameters and different values of magnetic field intensity on the reflected and absorbed powers are discussed. The results illustrate that the thickness of plasma seldom affects the reflection of radar wave, but it can broaden or reduce the absorption width. Meanwhile, the background magnetic field intensity has an influence upon the results, and it could change the resonance spectrum of magnetized plasma. We also find out that, with appropriate plasma density, collision frequency and magnetic field intensity, more than 90% of radar wave power can be absorbed and the resonant absorption band is about 2 GHz.  相似文献   

3.
The absorption, reflection, and transmission of electromagnetic waves by a nonuniform plasma slab immersed in an ambient uniform magnetic field of various strengths are studied in this paper. The effects of the plasma parameters and magnetic field strength on the absorbed, reflected, and transmitted power are discussed. The magnetized nonuniform plasma slab is modeled by a series of magnetized uniform plasma subslabs. The calculation results show that the effects of the magnetic field strength and density gradient on the absorbed power, as well as the frequency band of resonant absorption, are significant. A complete analysis utilizing the scattering matrix method is also used to compare the above calculation results which neglect multiple reflections between subslab interfaces. Broadband absorption of electromagnetic waves can be achieved by changing the magnetic field strength and plasma density. More than 90% of the electromagnetic wave power can be absorbed in a magnetized nonuniform plasma slab with width of 12 cm and the absorption bandwidth can range from 1 to 20 GHz with different plasma parameters and external magnetic field strengths.  相似文献   

4.
In this paper, tunable optical bistability that denotes the relationship between input intensity and output intensity is numerically investigated in the microwave frequency region based on the one-dimensional (1D) sandwich photonic structure consisting of a Kerr-type nonlinear material slab and two magnetized cold plasma layers. Results show that, in the case of TM-polarized electromagnetic wave, width and switching thresholds of the bistability loops are dependent on the working frequency, initial incidence angle, layer thickness, plasma density, and external magnetic field, which should be judiciously selected to obtain a required bistability behavior. Compared to the case of switch-down threshold, the switch-up threshold in the bistability loop is more sensitive to the changes of parameters. Through this study, the suggested 1D sandwich photonic structure is beneficial to the all-optical signal processing.  相似文献   

5.
In this paper the reflection index of an unsteady magnetized plasma slab irradiated by an electromagnetic wave is investigated. The direction of the external magnetic field is normal to the plasma surface. Here, it is assumed that the electromagnetic wave is normally incident on the gas slab. On the other hand, this gas slab is being ionized by another strong microwave field and the density of the unsteady plasma increases with time. The effects of the density growth rate, the thickness of the plasma slab and the external magnetic field on the reflection index are simulated.  相似文献   

6.
The stability of the electromagnetic plasma confinement by powerful external s-polarized pump waves is considered. The parametric excitation of standing electromagnetic waves along the plasma boundary with frequencies close to the frequency of the pump wave leads to a periodic density modulation of the plasma boundary. The density disturbances along the direction of the external wave field are connected to the excitation of transverse p-polarized surface waves while the modulation in the direction perpendicular to the pump field are created by the parametric interaction between the external wave and s-polarized trapped leaking oscillations. Only when the leaking waves are excited the scale length of the modulation is larger than half the free space wave length of the incident radiation.  相似文献   

7.
In this paper the pattern of intensity transmitted due to interference in a cold collisionless magnetized moving plasma slab is investigated. The direction of the external magnetic field is normal to the plasma surface and the plasma slab moves across relative to the magnetic field. By taking into account relativistic considerations, the effects of the plasma density, the thickness of the plasma slab and the speed of motion on [A27] the bandwidth, the finesse factor and visibility are simulated. These investigations for S-polarized and P-polarized electromagnetic beams have been done separately.  相似文献   

8.
Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are ofP polarization. We get the generated currents and fields at combination frequencies analytically. Unlike theS-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency.  相似文献   

9.
This paper studies the propagation and spatial attenuation of high‐frequency eigen‐symmetric and dipolar electromagnetic waves along a coaxial plasma–metal waveguiding structure that contains a slightly axial and strong radial non‐uniform cylindrical plasma slab in an external azimuthal non‐uniform magnetic field. The influence of such parameters as the effective electron collision frequency, the direct current value producing the external azimuthal magnetic field, parameters that characterize plasma density radial profile, and waveguide geometric parameters on the dispersion, spatial attenuation, and radial field structure of the waves is considered. The regions of waveguiding structure parameters where the electromagnetic wave properties can be effectively controlled are studied and analyzed.  相似文献   

10.
We investigate generation and radiation of waves at combined frequencies from an arbitrary inhomogeneous, isotropic plasma layer, when electromagnetic waves are obliquely incident on it to interact with a surface wave at the plasma boundary. This interaction has been described for both S- and P-polarized waves. We consider a warm plasma layer with thickness very small as compared to the wavelengths of oscillations. It is shown that generated waves are strongly amplified, compared to cold plasma, when phase velocities of generated waves approaches the electron thermal velocity. Waves are not emitted when P-polarized waves are incident perpendicular onto the plasma layer.  相似文献   

11.
Resonant interaction at oblique incidence of an electromagnetic wave on an inhomogeneous plasma slab is studied. The time evolution of this interaction is solved numerically from two-fluid equations, adiabatic equation for electron pressure and from Maxwell equations. It is shown that the electromagnetic energy of an incident wave is transformed both into the heat energy and into the energy of plasma oscillations in the direction of density gradient. The distribution of the transformed energy between the heat energy and the energy of plasma oscillations is strongly dependent on the plasma temperature. The ratio of heat energy to the energy of plasma oscillations is growing with growing temperature. The plasma oscillations are generated by magnetic induction of the penetrating wave. In a cold plasma they are generated especially in the overdense region and their frequency is equal to local plasma frequency. The electric field in the direction of plasma gradient has a form of a wave packet whose envelope reaches a maximum at resonance. The characteristic wavelength in the wave packet decreases and the amplitude of the packet increases with the time.  相似文献   

12.
ABSTRACT

The properties of terahertz waves propagation in a homogeneous, magnetized, and collisional plasma are studied in this paper. We first theoretically calculate the reflectance and absorbance coefficients for terahertz waves passing through this region. Then, numerous simulations are conducted to investigate the influence of the plasma on the terahertz waves propagation. According to the results, the plasma density, collision frequency, and magnetic field play important roles in dielectric spectra, and then result in large impacts on the propagation with the variation of the plasma thickness, incident angle, and the gas pressure. The absorbance increases with the increase of plasma density, and the collision frequency. With respect to the collisional absorption and electron cyclotron resonance, the absorbance first increases to its maximum peak and then decreases as the wave frequency increases. When the plasma density increases, the peak value shifts to a higher frequency. Meanwhile, the plasma slab acts as the absorber or reflector with the variation of the gas pressure and the plasma thickness. These results provide supplementary information on the terahertz waves propagation in plasma and can serve as a theoretical basis for its application.  相似文献   

13.
Hong Wei Yang 《Optik》2011,122(11):945-948
Numerical simulation of interaction between plasma slab and electromagnetic wave which has different incident frequency and incident angle is discussed in this paper. Some parameters contain reflection coefficient, transmission coefficient, reflectance, transmittance and phase are calculated by transfer matrix method. The relation of these parameters with incident frequency and incident angle is analyzed. The results show that the incident angle has low influence on the parameters when the angle varies from 0° to 30° and from 70° to 90°, but it has high influence on the parameters when it changes from 30° to 70°. These rules have certain directive significance to the research of interaction between oblique incidence electromagnetic wave and plasma slab and to the design of plasma layer.  相似文献   

14.
Magnetically confined argon plasma produced by hollow cathode arc discharge has been studied in different experimental conditions, with discharge current from 10–50 A, vessel argon pressure between 10–3 and 10–4 torr (1 torr=133·32 Pa) and axial magnetic field up to 0·12 T. The plasma density measured by a cylindrical Langmuir probe is found to be 1019 to 4 × 1019 m–3 and the electron temperatureT e varies between 2·5 and 4·8 eV. When an external axial magnetic field is applied the plasma temperature decreases with the increase in the magnetic field intensity until it reaches a minimum value at 0·075T and then increases with the same rate. This has been interpreted as high frequency waves excitation due to electron beam-plasma interaction, which explains the electron density jumps with the magnetic field intensity. Enhanced plasma transport across the magnetic field is studied and classified as anomalous diffusion.  相似文献   

15.
Hao Li 《中国物理 B》2022,31(3):35202-035202
The application of magnetic fields, electric fields, and the increase of the electromagnetic wave frequency are up-and-coming solutions for the blackout problem. Therefore, this study considers the influence of the external magnetic field on the electron flow and the effect of the external electric field on the electron density distribution, and uses the scattering matrix method (SMM) to perform theoretical calculations and analyze the transmission behavior of terahertz waves under different electron densities, magnetic field distributions, and collision frequencies. The results show that the external magnetic field can improve the transmission of terahertz waves at the low-frequency end. Magnetizing the plasma from the direction perpendicular to the incident path can optimize the right-hand polarized wave transmission. The external electric field can increase the transmittance to some extent, and the increase of the collision frequency can suppress the right-hand polarized wave cyclotron resonance caused by the external magnetic field. By adjusting these parameters, it is expected to alleviate the blackout phenomenon to a certain extent.  相似文献   

16.
均匀磁化等离子体与雷达波相互作用的数值分析   总被引:9,自引:0,他引:9       下载免费PDF全文
唐德礼  孙爱萍  邱孝明 《物理学报》2002,51(8):1724-1729
采用平板几何对不同磁场强度下等离子体对电磁波的吸收、反射和透射特性进行了数值分析.结果表明,不同磁场可以显著改变等离子体对不同频率的雷达波的吸收和反射特性.当雷达波频率接近等离子体高混杂频率时,磁化等离子体将对该波产生强的共振吸收,带宽在2GHz左右,吸收比可达90%以上.因此,通过适当调整磁场强度、等离子体密度和碰撞频率,可实现较宽雷达波段的等离子体隐身 关键词: 电磁波 磁化等离子体 共振吸收 等离子体隐身  相似文献   

17.
孟令辉  任洪波  刘建晓 《物理学报》2018,67(17):174101-174101
通过解析方法研究了高温等离子体的太赫兹波传输特性.研究发现,高温等离子体对太赫兹波高频频段透过率较高,表现为通带;对低频频段透过率较低,表现为阻带.这与冷等离子体中电磁波的传输特性是一致的.但其透射率还受到温度与磁场的影响,当改变高温等离子体的电子温度与磁场时,在阻带内会产生一尖锐的透射峰.这种现象在冷等离子体模型中从来没有出现过.本文主要对电子温度和外加磁场两个影响因素进行讨论.研究发现,禁带内出现的透射峰频率受磁场影响,而峰值幅度受温度影响.计算得到了不同外加磁场条件下产生高透过率(透射率约为1)时的电子温度.基于该结果进一步研究了透射峰出现的规律,并通过曲线拟合的方法得到了透射峰频率所遵循的计算公式.数值结果表明透射峰频率与外磁场之间为正比例函数关系,而峰值电子温度取值与外磁场的关系表现为指数规律.最后对拟合得到的方程采用时域有限差分法进行了验证,数值结果与解析解符合较好,证明了该研究的正确性.  相似文献   

18.
Coefficients of power reflection (R), transmission (T) and absorption (A) for a homogeneous, magnetised, collisional and moving plasma slab are derived and discussed by taking p-polarized wave as the e.m. source wave and without imposing any restriction on the slab velocity. Effects of electron-neutral collisions (νen), ion-neutral collisions (νin) and the external magnetic field are included through momentum transfer equations. Plasma slab velocity (β = ν/c), electron ion densities (ωpe,i/ω) and the collision frequencies (νen,in) are found to cause significant change in the values of R, T and A, a numerical study of which is illustrated in the paper.  相似文献   

19.
The dispersion properties of slow electromagnetic surface waves propagating across a constant external magnetic field and along a plane plasma-metal interface at harmonics of the ion cyclotron frequency are studied. The motion of the plasma particles is described by a Vlasov-Boltzmann kinetic equation. The effects of the plasma size, the dielectric permittivity of the transition region between the plasma and metal, and the magnitude of the constant external magnetic field on the dispersion characteristics of ion surface cyclotron waves are studied. Zh. Tekh. Fiz. 69, 83–89 (October 1999)  相似文献   

20.
In this paper, the phenomenon of band gap transmission in high temperature plasma is studied. Cold plasma has high pass property, so the low-frequency electromagnetic wave cannot penetrate plasma and propagate in it. Simulation results show that in high temperature plasma, a transmission peak will be produced in the low frequency band where the band gap is supposed to occur due to the influence of the external magnetic field and the electron temperature. Through the study of the frequency and the amplitude of the transmission peak, it is found that the frequency of the peak is related to the collision frequency and the magnetic field, and the amplitude of the peak is related to the electron temperature and the thickness of the plasma slab. The calculation formula of peak frequency is obtained by fitting the obtained data. The fitting formula is validated by the analytic solution, and the results show that the two methods are in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号