首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From the viewpoint of controlled polymer synthesis, topochemical polymerization based on crystal engineering is very useful for controlling not only the primary chain structures but also the higher‐order structures of the crystalline polymers. We found a new type of topochemical polymerization of muconic and sorbic acid derivatives to give stereoregular and high‐molecular weight polymers under photo‐, X‐ray, and γ‐ray irradiation of the monomer crystals. In this article, we describe detailed features and the mechanism of the topochemical polymerization of diethyl‐(Z,Z)‐muconate as well as of various alkylammonium derivatives of muconic and sorbic acids, which are 1,3‐diene mono‐ and dicarboxylic acid derivatives, to control the stereochemical structures of the polymers. The polymerization reactivity of these monomers in the crystalline state and the stereochemical structure of the polymers produced are discussed based on the concept of crystal engineering, which is a useful method to design and control the reactivity, structure, and properties of organic solids. The reactivity of the topochemical polymerization is determined by the monomer crystal structure, i.e. the monomer molecular arrangement in the crystals. Polymer crystals derived from topochemical polymerization have a high potential as new organic crystalline materials for various applications. Organic intercalation using the polymer crystals prepared from alkylammonium muconates and sorbates is also described.  相似文献   

2.
We report the stereocontrol of diene polymers by the topochemical polymerization of alkoxy-substituted benzyl muconates in the solid state. A monomer stacking structure is controlled by the weak intermolecular interactions in the monomer crystals, depending on the structure and position of the alkoxy-substituent. The translational and alternating types of molecular stacking structures in a column provide diisotactic and disyndiotactic polymers, respectively, by the solid-state polymerization under UV and γ-ray irradiation. On the other hand, the meso and racemo structures of the resulting polymers are determined by the molecular symmetry of the used muconate monomers. The various substituted benzyl ester polymers are transformed into the same ethyl ester polymers with the four types of tacticities. The structure and crystallization behavior of the substituted benzyl ester polymers as well as the ethyl ester polymers have been revealed in detail. We clarify the effects of the tacticity on the crystallization property of the stereoregular polymuconates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4952–4965, 2006  相似文献   

3.
The halogen bonding and the pi...pi stacking interactions induce the noncovalent self-assembly of modules into photoreactive supramolecular architecture. The pi...pi interaction pre-organizes the template, and the halogen bonding aligns the olefins to conform to the topochemical principle for photoreaction. The UV irradiation of the crystal resulted in a cyclization product with quantitative yield and stereospecificity.  相似文献   

4.
A new type of organic intercalation system using poly(muconic acid) and poly(sorbic acid) crystals as the host compounds is described. The layered polymer crystals as the host are derived from benzyl-, dodecyl-, or naphthylmethylammonium salts of (Z,Z)-muconic or (E,E)-sorbic acids by topochemical polymerization. The subsequent solid-state hydrolysis of the resulting ammonium polymer crystals provides the corresponding carboxylic acid polymer crystals. When alkylamines are reacted with poly(muconic acid) or poly(sorbic acid) crystals dispersed in methanol at room temperature for a few hours, the intercalation proceeds to give layered ammonium polymer crystals via solid-state reactions, in which the polymers maintain a layered structure throughout. The interplanar spacing value of the polymer crystals changes according to the size of the guest molecules; that is, it exactly depends on the carbon number of the alkylamines used for each reaction of poly(muconic acid) or poly(sorbic acid) crystals. The stacking structure of alkyl chains with a tilt in the intercalated alkylammonium layers exists irrespective of the chemical and crystal structures of the host polymers. The intercalation of higher alkylamines into poly(muconic acid) crystals proceeds fast and quantitatively, while the conversion is dependent on the reaction conditions such as the structure and amount of the amine and the reaction time during the intercalation with poly(sorbic acid) crystals, due to the difference in the repeating layered structures of these polymer crystals. Some functional amines are also used as the guest molecules for this organic intercalation system.  相似文献   

5.
For the solid-state photoisomerization of benzyl (Z,Z)-muconate to the corresponding (E,E)-muconate, the direct observation of a change in the crystal structure has revealed that the isomerization occurs by a topochemical reaction process according to a bicycle-pedal model and is finally accompanied by a phase transition to a stable crystal structure.  相似文献   

6.
We report the first synthesis of a disyndiotactic polymer through topochemical polymerization using di(4-methoxybenzyl)muconate as the 1,3-diene dicarboxylate monomer. It provides a tritactic polymer under photoirradiation in the crystalline state, as a result of the alternate molecular stacking in a column formed in the crystals with aid of weak hydrogen bonds such as CH/pi and CH...O intermolecular interactions.  相似文献   

7.
The conformational preferences and the self-associational behaviors of two hemin-derived porphyrin compounds, a tetramethyl ester and a liquid crystalline tetrakis(3,5-didodecyloxyphenyl)ester, have been studied by UV/vis and (1)H NMR spectroscopy in solution. Results indicate that the 3,5-didodecyloxyphenyl units play an important role in both the conformational and the self-associational behaviors of the mesomorphic tetraester. In the monomeric, nonassociated species, the two propionic 3,5-didodecyloxyphenyl esters establish mutual CH/pi interactions that restrict the fluctuative behavior of the chains. In the dimeric, self-associated species, intermolecular CH/pi interactions occur in addition to the pi-pi stacking of the porphyrin cores. The temperature-dependent addition of side CH/pi interactions to the pi-pi stacking of the porphyrin rings accounts for the observed tightening and for the slower dynamics of the dimeric structure. The relationship between the self-associational behavior and the mesomorphism of the hemin-derived porphyrin tetraesters is also discussed.  相似文献   

8.
Here we demonstrate a unique two‐dimensional polymer synthesis through topochemical polymerization via polymer crystal engineering, which is useful for controlling and designing the polymerization reactivity as well as the polymer chain and crystal structures. We have succeeded in the synthesis of a sheet polymer through the polymerization of alkylenediammonium (Z,Z)‐muconate as a multifunctional 1,3‐diene monomer in the crystalline state under the irradiation of UV and γ‐rays or upon heating in the dark. The photopolymerization reactivity of several muconates and the structural control of the obtained polymer are described. The stereochemical structure of the polymer and the polymerization mechanism are discussed on the basis of the results of IR and NMR spectroscopy, thermogravimetric measurements, and solid‐state hydrolysis for the transformation into poly(muconic acid). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3922–3929, 2004  相似文献   

9.
The first topochemical 1,6-polymerization of a triene has been observed. The required supramolecular structure for this polymerization was achieved by the pi-pi stacking of the isonicotinate functionality. The crystal environment of this polymerization reaction controlled both the molecular and supramolecular structure of the polymer and allowed its structure to be determined by single-crystal X-ray diffraction.  相似文献   

10.
Reactions of the uranyl cation (UO(2)(2+)) with 4-halopyridinium ions (X = Cl, Br, I) in high halide media (X' = Cl, Br) have produced six novel compounds, the structures of which have been determined by single crystal X-ray diffraction (XRD). The compounds can be divided into two categories based on the different modes of hydrogen bonding and halogen-halogen interactions present in the crystal structures, with one group showing approximately Type I halogen-halogen interactions and the second showing Type II. Presented is a discussion of the relative strengths of the interactions as a function of halogen size.  相似文献   

11.
A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.  相似文献   

12.
The isolation, structure determination and chemical characterization of eumelanins has been plagued by their very low solubility in organic solvents. To gain insights into the structure and reactivity of these unusual and important biologic macromolecules and to pave the way for their use in electronics, we have prepared soluble melanins via the synthesis of monomeric precursors containing lipophilic substituents. Two such monomers derived from 5,6-dihydroxyindole-2-carboxylic acid (DHICA) were prepared, namely the benzyl and octyl ester derivatives. Both benzyl and octyl ester monomers were oxidatively polymerized to yield dark, melanin-like pigments. These polymerization processes were followed by UV-visible, fluorescence and NMR spectroscopy. These studies showed that the polymerizations proceeded by cross-linking at the 4- and 7-positions of the indole nucleus and led to highly heterogeneous polymeric products. Incorporation of a lipophilic benzyl or octyl group resulted in enhanced solubility of the pigments in a wide range of organic solvents. The UV-visible spectra of the organically soluble synthetic melanins were essentially identical to that of natural eumelanin.  相似文献   

13.
Soap-free emulsion polymerizations of aromatic vinyl monomers using 2,2′-azobis(2-methylpropionitrile) (AIBN) were investigated to clarify the origin of the negative charge of the synthesized particles. It was found that the zeta potential and size of the particles synthesized by soap-free emulsion polymerization using AIBN had a strong relationship with the pi electron cloud density in the aromatic vinyl monomer used in the polymerization. The effect of the position of the substituent atom in the phenyl ring on the synthesized particle properties was small.  相似文献   

14.
The nature of intermolecular interactions between halogen atoms, X...X (X = Cl, Br, I), continues to be of topical interest because these interactions may be used as design elements in crystal engineering. Hexahalogenated benzenes (C6Cl(6-n)Br(n), C6Cl(6-n)I(n), C6Br(6-n)I(n)) crystallise in two main packing modes, which take the monoclinic space group P2(1)/n and the triclinic space group P1. The former, which is isostructural to C6Cl6, is more common. For molecules that lack inversion symmetry, adoption of this monoclinic structure would necessarily lead to crystallographic disorder. In C6Cl6, the planar molecules form Cl...Cl contacts and also pi...pi stacking interactions. When crystals of C6Cl6 are compressed mechanically along their needle length, that is, [010], a bending deformation takes place, because of the stronger interactions in the stacking direction. Further compression propagates consecutively in a snakelike motion through the crystal, similar to what has been suggested for the motion of dislocations. The bending of C6Cl6 crystals is related to the weakness of the Cl...Cl interactions compared with the stronger pi...pi stacking interactions. The triclinic packing is less common and is restricted to molecules that have a symmetrical (1,3,5- and 2,4,6-) halogen substitution pattern. This packing type is characterised by specific, polarisation-induced X...X interactions that result in threefold-symmetrical X3 synthons, especially when X = I; this leads to a layered pseudohexagonal structure in which successive planar layers are inversion related and stacked so that bumps in one layer fit into the hollows of the next in a space-filling manner. The triclinic crystals shear on application of a mechanical stress only along the plane of deformation. This shearing arises from the sliding of layers against one another. Nonspecificity of the weak interlayer interactions here is demonstrated by the structure of twinned crystals of these compounds. One of the compounds studied (1,3,5-tribromo-2,4,6-triiodobenzene) is dimorphic, adopting both the monoclinic and triclinic structures, and the reasons for polymorphism are suggested. To summarise, both chemical and geometrical models need to be considered for X...X interactions in hexahalogenated benzenes. The X...X interactions in the monoclinic group are nonspecific, whereas in the triclinic group some X...X interactions are anisotropic, chemically specific and crystal-structure directing.  相似文献   

15.
Poly(muconic acid)s, stereoregular polymer crystals obtained by topochemical polymerization using supramolecular control, function as the layered host solids for organic intercalation, in which alkylamines as the guest species are reversibly inserted into them through an acid-base interaction. We now report a double-intercalation method using alkylamine and pyrene as the guests to control the fluorescence property in the solid state. An aromatic compound can be separately introduced into the hydrophobic layers of the ammonium polymer crystals. The aromatic molecules, which are sandwiched between two alkyl layers, show fluorescence emission from the single molecule but not the excimer. This method can be applied to various organic photofunctional materials showing unique fluorescence properties.  相似文献   

16.
Four kinds of stereoregular poly(muconic acid)s, which are synthesized by topochemical polymerization and subsequent solid-state hydrolysis, are used as the organic host materials for intercalation. We describe the reaction behavior and layered structure of intercalation compounds using stereoregular poly(muconic acid)s and n-alkylamines as host and guest, respectively. The packing structure of the guest alkylamines was determined by X-ray diffractions as well as IR and Raman spectroscopies. We have found that the orientation of the guest molecules is controlled by the host polymer tacticity, depending on the structure of the two-dimensional hydrogen-bonding network formed in the polymer sheets of the crystals.  相似文献   

17.
Cyclocondensation of ethyl (imidazolidine‐2‐ylidene)acetate with aromatic esters bearing labile halogen in ortho‐position leads to fused heterocycles, which is formed by substitution of halogen atom with α‐carbon atom of cyclic ketene aminal and binding of nitrogen atom with carbonyl carbon atom of aromatic ester.  相似文献   

18.
Moiseev DV  James BR  Hu TQ 《Inorganic chemistry》2006,45(25):10338-10346
With the aim of learning more about the bleaching action of pulps by (hydroxymethyl)phosphines, we reacted several benzaldehydes, containing MeO, Me, OH, or halogen substituents, with tris(3-hydroxypropyl)phosphine, [HO(CH2)3]3P, in aqueous solution at 90 degrees C under argon. Effective reduction of the aldehydes to the corresponding benzyl alcohols with concomitant oxidation of the phosphine to the phosphine oxide takes place, the reaction proceeding via an initially formed phosphonium species. When the reactions are carried out in D2O, the benzyl alcohol product from 3,4-dimethoxybenzaldehyde contains one deuterium atom at the benzyl-carbon atom, consistent with the last step of the mechanism involving a carbanion intermediate. With syringaldehyde (3,5-dimethoxy-4-hydroxy-benzaldehyde), the reduction product (syringyl alcohol) is more reactive toward the phosphine than is the starting aldehyde, and a zwitterionic, phosphobetaine product is formed. In D2O, the zwitterion benzyl protons and protons of the hydroxypropyl-CH2 adjacent to the P atom undergo H/D exchange via presumed phosphorus ylide intermediates. Under the same aqueous reaction conditions, tris(3-hydroxypropyl)phosphine, [HO(CH2)3]3P (THPP), does not undergo redox reactions with aliphatic aldehydes but simply promotes a base-catalyzed self-condensation (aldol) reaction. THPP reduction of an aromatic ketone is sluggish, presumably because the carbonyl C-atom is less electrophilic than that present in an aromatic aldehyde.  相似文献   

19.
The successful design and synthesis of the new bis(pyrazolyl)ethanamine ligand and its copper(I) triphenylphosphine complex is reported. The ligand coordinates to the copper(I) center in a fac tridentate fashion, through both the pyrazolyl rings and the nitrogen atom from the NH2 group. In the solid state, the compound is organized in a 2D noncovalent network by N-H...pi and C-H...pi interactions and hydrogen bonds. The analogous ligand with a benzyl group substituted on the amine forms a complex with the same copper(I) center that has a similar 2D supramolecular structure and, in addition, is organized by the benzyl synthon into a 3D architecture.  相似文献   

20.
The substitution of chloro or bromo groups in tetracene gives rise to the change of crystal structure, having a substantial effect on carrier transport. Halogenated tetracene derivatives were synthesized and grown into single crystals. Monosubstituted 5-bromo- and 5-chlorotetracenes have the herringbone-type structure, while 5,11-dichlorotetracene has the slipped pi stacking structure. Mobility of 5,11-dichlorotetracene was measured to be as high as 1.6 cm2/V.s in single-crystal transistors. The pi stacking structure, which enhances pi orbital overlap and facilitates carrier transport, may thus be responsible for this high mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号