首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports the spectral properties and energy levels of Cr3+:Sc2(MoO4)3 crystal. The crystal field strength Dq, Racah parameter B and C were calculated to be 1408 cm−1, 608 cm−1 and 3054 cm−1, respectively. The absorption cross sections σα of 4A24T1 and 4A24T2 transitions were 3.74×10−19 cm2 at 499 nm and 3.21×10−19 cm2 at 710 nm, respectively. The emission cross section σe was 375×10−20 cm2 at 880 nm. Cr3+:Sc2(MoO4)3 crystal has a broad emission band with a broad FWHM of 176 nm (2179 cm−1). Therefore, Cr3+:Sc2(MoO4)3 crystal may be regarded as a potential tunable laser gain medium.  相似文献   

2.
Nonlinear optical properties of Fe2O3 nanoparticles were investigated by the signal-beam Z-scan technique with Ar+ and Ne–He lasers. The largest reported effective nonlinear coefficient, n2=−8.07×10−7 cm2/W, was obtained. It is demonstrated that the nonlinear optical response originals from quantum confinement effect.  相似文献   

3.
The bulk dense Pb[(Mn0.33Nb0.67)0.5(Mn0.33Sb0.67)0.5]0.08(ZrxTi1−x)0.92O3 pyroelectric ceramics have been successfully prepared by the conventional solid method. The effect of three phases coexistence in the ceramics is studied. When x = 0.95 and 0.85 in the ceramics, the maximum pyroelectric coefficient peaks appear at 23 °C and 45 °C, and the maximum values are 26.5 × 10−4 C/m2 °C and 25.5 × 10−4 C/m2 °C, respectively. The maximum pyroelectric coefficient appears large while the peaks widths are small. When the two kinds of ceramic powders mixed with the mol ratio of 2:1, the pyroelectric coefficient of the ceramics is above 10.0 × 10−4 C/m2 °C in a broad temperature range from 20 °C to 55 °C. The possible physical mechanism of the temperature broadened phenomenon is briefly discussed.  相似文献   

4.
To support planetary studies of the Venus atmosphere, we measured line strengths of the 2v3, v1+2v2+v3, and 4v2+v3 bands of the primary isotopologue of carbonyl sulfide (16O12C32S), whose band centers are located at 4101.387, 3937.427, and 4141.212 cm−1, respectively. For this, infrared absorption spectra in normal carbonyl sulfide (OCS) sample gas were recorded at an unapodized resolution of 0.0033 cm−1 at ambient room temperatures using a Bruker Fourier transform spectrometer (FTS) at the Jet Propulsion Laboratory. The FTS instrumental line shape (ILS) function was investigated, which revealed no significant instrumental line broadening or distortions. Various custom-made short cells and a multi-pass White cell were employed to achieve optical densities sufficient to observe the strong 2v3 and the weaker bands in the region. Gas sample impurities and the isotopic abundances were determined from mass spectrum analysis. Line strengths were retrieved spectrum by spectrum using a non-linear curve fitting algorithm adopting a standard Voigt line profile, from which Herman–Wallis factors were derived for the three bands. The band strengths of 2v3, v1+2v2+v3, and 4v2+v3 of 16O12C32S (normalized at 100% of isotopologue) are observed to be 6.315(13)×10−19, 1.570(2)×10−20, and 7.949(20)×10−21 cm−1/molecule cm−2, respectively, at 296 K. These results are compared with earlier measurements and the HITRAN 2004 database.  相似文献   

5.
Using a Fourier transform spectrometer, we have recorded the spectra of ozone in the region of 4600 cm−1, with a resolution of 0.008 cm−1. The strongest absorption in this region is due to the ν1+ ν2+ 3ν3band which is in Coriolis interaction with the ν2+ 4ν3band. We have been able to assign more than 1700 transitions for these two bands. To correctly reproduce the calculation of energy levels, it has been necessary to introduce the (320) state which strongly perturbs the (113) and (014) states through Coriolis- and Fermi-type resonances. Seventy transitions of the 3ν1+ 2ν2band have also been observed. The final fit on 926 energy levels withJmax= 50 andKmax= 16 gives RMS = 3.1 × 10−3cm−1and provides a satisfactory agreement of calculated and observed upper levels for most of the transitions. The following values for band centers are derived: ν01+ ν2+ 3ν3) = 4658.950 cm−1, ν0(3ν1+ 2ν2) = 4643.821 cm−1, and ν02+ 4ν3) = 4632.888 cm−1. Line intensities have been measured and fitted, leading to the determination of transition moment parameters for the two bands ν1+ ν2+ 3ν3and ν2+ 4ν3. Using these parameters we have obtained the following estimations for the integrated band intensities,SV1+ ν2+ 3ν3) = 8.84 × 10−22,SV2+ 4ν3) = 1.70 × 10−22, andSV(3ν1+ 2ν2) = 0.49 × 10−22cm−1/molecule cm−2at 296 K, which correspond to a cutoff of 10−26cm−1/molecule cm−2.  相似文献   

6.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

7.
We present a systematic investigation of the effects of oxygen growth pressure on the structural, optical, and electrical properties of In2O3:Cr thin films grown by pulsed laser deposition. X-ray diffraction analysis showed increases in lattice constant from 10.103 Å to 10.337 Å, and in particle size from 13.9 nm to 35.5 nm as the oxygen growth pressure increased from 7.5 × 10−6 Torr to 7.5 × 10−3 Torr, respectively. The observed shift in the X-ray diffraction peaks to lower angles was assumed to be caused by the reduction in the lattice defect density, precisely oxygen vacancies. The optical transparency increased with partial oxygen pressure (PO2), and an average transmittance of 85% was obtained at 7.5 × 10−3 Torr. The films are highly conducting with resistivity as low as 2 × 10−4 Ω cm and mobility as high as 133 cm/V s. Temperature dependent resistivity measurements in the 45 < T < 300 K temperature range reveal that films grown at 7.5×10−6PO2≤7.5×10−4 Torr exhibit negative temperature coefficient of resistivity (TCR) below approximately T = 60 K, T = 120 K, T = 160 K; then positive TCR in the temperature intervals 60 < T < 300 K, 120 < T < 300 K, and 160 < T < 300 K, respectively. This suggests that two disparate mechanisms govern electrical dc transport in the two temperature regions. Film grown at PO2 of 7.5 × 10−3 Torr displayed typical semiconducting behavior with negative TCR in the whole temperature region.  相似文献   

8.
Using a high-resolution Fourier transform spectrum of hydrogen selenide in natural abundance, about 600 intensities of lines belonging to the ν1, ν3, and 2ν2 bands of H280Se were measured. A least-squares fit of these intensities was performed, allowing determination of the vibrational transition moments of these bands and their rotational corrections. Finally, the first derivatives of the dipole moment with respect to the normal coordinates q1 and q3 were found to be ∂μχ/∂q1 = (−0.5938 ± 0.010) × 10−1 and ∂μz/∂q3 = (0.5683 ± 0.010) × 10−1 Debye, respectively.  相似文献   

9.
Absorption spectra of C2H2 have been recorded between 50 and 1450 cm−1, with a resolution always better than 0.005 cm−1, using two different Fourier transform spectrometers. Analysis of the data provided two sets of results. First, the bending levels with Σt Vt(t = 4, 5) ≤ 2 were characterized by a coherent set of 34 parameters derived from the simultaneous analysis of 15 bands, performed using a matrix Hamiltonian. The following main parameters were obtained (in cm−1): ω40 = 608.985196(14), ω50 = 729.157564(10); B0 = 1.17664632(18), α4 = −1.353535(86) × 10−3, α5 = −2.232075(40) × 10−3; q40 = 5.24858(12) × 10−3, and q50 = 4.66044(12) × 10−3, with the errors (1σ) on the last quoted digit. Second, a more complete set of bending levels with Σt Vt ≤ 4, some of which have never previously been reported, and also including V2 = 1 have been fitted to 80 parameters. This simultaneous fit involved 43 bands and used the same full Hamiltonian matrix. Some perturbations which affect the higher excited levels are discussed.  相似文献   

10.
The 2ν3(A1) band of 12CD3F near 5.06 μm has been recorded with a resolution of 20–24 × 10−3 cm−1. The value of the parameter (αB − αA) for this band was found to be very small and, therefore, the K structure of the R(J) and P(J) manifolds was unresolved for J < 15 and only partially resolved for larger J values. The band was analyzed using standard techniques and values for the following constants determined: ν0 = 1977.178(3) cm−1, B″ = 0.68216(9) cm−1, DJ = 1.10(30) × 10−6 cm−1, αB = (B″ − B′) = 3.086(7) × 10−3 cm−1, and βJ = (DJDJ) = −3.24(11) × 10−7 cm−1. A value of αA = (A″ − A′) = 2.90(5) × 10−3 cm−1 has been obtained through band contour simulations of the R(J) and P(J) multiplets.  相似文献   

11.
The overtone band 2ν08 of CH3CN around 720 cm−1 has been measured on a Bruker Fourier transform spectrometer at a resolution of 0.003 cm−1. Only the parallel band was observed, but due to the l(2, 2) resonance, ΔK = −2 lines leading to the v8 = 2, l8 = −2 levels with K = 1-3 could be seen. More information for the l8 = ±2 component of the vibrational state v8 = 2 was evaluated from the hot band 2ν±28 - ν±18. Altogether more than 1000 lines were assigned. In the fit pure rotational lines from literature were also combined. Among the results the anomalous A0 - A′ values 4.6722(13) × 10−3 cm−1 for the 2ν08 band and 7.0324(32) × 10−3 cm−1 for the 2ν±28 band are striking.  相似文献   

12.
The 2ν3 overtone (A1E) and the ν1 + ν3 (E) combination bands of the oblate symmetric top 14NF3 were studied by FTIR spectroscopy with a resolution of 2.5 × 10−3 cm−1. Nearly 500 lines up to Kmax/Jmax = 30/43 were observed for the weak A1 component reaching the v3 = 20 substate (1803.1302 cm−1), the majority of which corresponded to reinforced K = 3p-type transitions. For the strong E component reaching the v3 = 2±2 substate (1810.4239 cm−1), about 3550 transitions were assigned up to Kmax/Jmax = 65/69, favoring a clear observation of the ℓ(4, −2) and ℓ(4, 4) splittings within the kℓ = −2 and +4 sublevels, respectively. The two v3 = 2 substates are linked by the ℓ(2, 2)- and ℓ(2, −1)-type interactions, providing severe crossings, respectively, at K′ = 6 and near K′ = 24 on the v3 = 2+2 side. A model working in the D-reduction and including all these ℓ-type interactions could reproduce together 3695 nonzero weighted experimental data (NZW) through 33 free parameters with a standard deviation of σ = 0.357 × 10−3  cm−1. As for the ν1 + ν3 (E) combination band, about 3690 lines were assigned up to Kmax/Jmax = 45/55. Its v1 = v3 = 1 upper state (1931.577 5 cm−1) was treated using the same model recently applied to the v3 = 1 (E, 907.5413 cm−1) state. It yielded 21 free parameters through 3282 NZW experimental data, adjusted with σ = 0.344 × 10−3  cm−1 in the D-reduction. For the two excited states, the small and unobserved ℓ(0, 6) interaction was tested as useless. To confirm the adequacy of the vibrationally isolated models used, some other reductions of the Hamiltonian were tried. For the v3 = 2 state, the D-, L-, and LD-reductions led to similar σ’s, while the Q one was not successful. For the v1 = v3 = 1 state, the D- and Q-reductions gave comparable σ’s, while the QD-reduction was not as good. The corresponding unitary equivalence relations are generally more nicely fulfilled for the v3 = 2 state than for the v1 = v3 = 1 state. The three derivable anharmonicity constants in cm−1 are x33 = −4.1528, g33 = +1.8235 and x13 = −7.9652.  相似文献   

13.
The Kerr (quadratic electro-optic) property of K0.95Li0.05Ta0.60Nb0.40O3 was measured by using an automated scanning Mach–Zehnder interferometer. K0.95Li0.05Ta0.60Nb0.40O3 has large Kerr effect with R11 = 7.2 × 10−16 m2/V2 and R12 = −1.2 × 10−16 m2/V2 at 632.8 nm near its phase-transition temperature. The dielectric and Kerr properties as function of temperature were also investigated, thus the quadratic polarization-optic coefficients were calculated. The values of g11 and g12 are 0.083 m4/C2 and −0.014 m4/C2, respectively, and do not depend on temperature within the measurement accuracy of 5%.  相似文献   

14.
The reaction of methyl radicals (CH3) with molecular oxygen (O2) has been investigated in high-temperature shock tube experiments. The overall rate coefficient, k1 = k1a + k1b, and individual rate coefficients for the two high-temperature product channels, (1a) producing CH3O + O and (1b) producing CH2O + OH, were determined using ultra-lean mixtures of CH3I and O2 in Ar/He. Narrow-linewidth UV laser absorption at 306.7 nm was used to measure OH concentrations, for which the normalized rise time is sensitive to the overall rate coefficient k1 but relatively insensitive to the branching ratio of the individual channels and to secondary reactions. Atomic resonance absorption spectroscopy measurements of O-atoms were used for a direct measurement of channel (1a). Through the combination of measurements using the two different diagnostics, rate coefficient expressions for both channels were determined. Over the temperature range 1590–2430 K, k1a = 6.08 × 107T1.54 exp (−14005/T) cm3 mol−1 s−1 and k1b = 68.6 T2.86 exp (−4916/T) cm3 mol−1 s−1. The overall rate coefficient is in close agreement with a recent ab initio calculation and one other shock tube study, while comparison of k1a and k1b to these and other experimental studies yields mixed results. In contrast to one recent experimental study, reaction (1b) is found to be the dominant channel over the entire experimental temperature range.  相似文献   

15.
The nonlinear optical (NLO) properties of a novel cluster Polymer {WS4Cu4I2(bpe)3}n solution are studied by using Z-scan technique with laser pulses of 4.5 ns pulse-width at a wavelength of 532 nm. The results show that the cluster solution possesses strong nonlinear absorption and refraction. Nonlinear refraction of the cluster is composed of third-order nonlinear refraction and transient thermal effect. The thermal effect is mainly due to the strong nonlinear absorption. Numerical simulations obtained by solving simultaneously photo-acoustic and electromagnetic wave equations, agrees basically with experimental results.  相似文献   

16.
Metal nanocluster composite glass prepared by 180 keV Cu ions into silica with dose of 5×1016 ions/cm2 has been studied. The microstructural properties of the nanoclusters has been verified by optical absorption spectra and transmission electron microscopy (TEM). Third-order nonlinear optical properties of the nanoclusters were measured at 1064 and 532 nm excitations using Z-scan technique. The nonlinear refraction index, nonlinear absorption coefficient, and the real and imaginary parts of the third-order nonlinear susceptibility were deduced. Results of the investigation of nonlinear refraction by the off-axis Z-scan configuration were presented and the mechanisms responsible for the nonlinear response were discussed. Third-order nonlinear susceptibility χ(3) of this kind of sample was determined to be 8.7×10−8 esu at 532 nm and 6.0×10−8 esu at 1064 nm, respectively.  相似文献   

17.
We report here the studies on third-order nonlinear optical properties of two novel polythiophene composite films investigated using the Z-scan technique. The measurements were carried out using a Q-switched, frequency doubled Nd:YAG laser producing 7 nanosecond laser pulses at 532 nm. Z-scan results reveal that the composite films exhibit self-defocusing nonlinearity. The real and imaginary parts of the third-order nonlinear optical susceptibility were of the order 10−12 esu. The effective excited-state absorption cross section was found to be larger than the ground state absorption cross section, indicating that the operating nonlinear mechanism is reverse saturable absorption (RSA). The polythiophene composite films also exhibit good optical power limiting of the nanosecond laser pulses. The nonlinear optical parameters are found to increase on increasing the strength of the electron-donor group, indicating the dependence of χ (3) on the electron-donor/acceptor units of polythiophenes.  相似文献   

18.
The Fourier transform infrared spectrum of monoisotopic SC80Se has been investigated in the ν2, ν3, 2ν2, 2ν3, and ν1 regions with a resolution between 3 and 4 × 10−3 cm−1. In addition, the millimeter-wave spectrum has been studied in the region 150 to 320 GHz, and ground and ν2 = 1 excited state transitions have been measured. Ground state constants, B0 = 2043.285 4(4) MHz and D0 = 146.53(5) Hz, have been determined from a merge of millimeter-wave data and ground state combination differences spanning J values up to 77 and 143, respectively. The band centers ν2 = 352.341 075(9) cm−1 and ν3 = 505.480 06(5)cm−1 have been determined. The rovibrational parameters of numerous overtone and combination levels (ν1νl22ν3) = 0200, 0220, 0310, 0330, 0400, 0420, 0002, and 0003 have been obtained from polynomial analyses whose standard deviations ranged from 0.7 to 3.5 × 10−4 cm−1. The 1000 level, νeff 1435.840 cm−1, is anharmonically perturbed by the 0400 level, with an avoided crossing at J = 55, and W12222 = 0.963 09(1) cm−1. Transitions to both the upper (E+) and lower (E) sublevels of the dyad were observed for 1 ≤ J′ ≤ 117 and 4 ≤ J′ ≤ 171, respectively, and the deperturbed wavenumbers ν1 = 1435.542 76(2) and 4ν02 = 1432.725 00(3) cm−1 were derived. Furthermore, a local crossing of the E and 0420 levels involving l-type resonance was observed at J = 91.  相似文献   

19.
Several elementary reactions of formyl radical of combustion importance were studied using pulsed laser photolysis coupled to transient UV–Vis absorption spectroscopy: HCO → H + CO (1), HCO + HCO → products (2), and HCO + CH3 → products (3). One-pass UV absorption, multi-pass UV absorption as well as cavity ring-down spectroscopy in the red spectral region were used to monitor temporal profiles of HCO radical. Reaction (1) was studied over the buffer gas (He) pressure range 0.8–100 bar and the temperature range 498–769 K. Reactions (2a), (2b), (2c), (3a) and (3b) as well as the UV absorption spectrum of HCO, were studied at 298 and 588 K, and the buffer gas (He) pressure of 1 bar. Pulsed laser photolysis (308, 320, and 193 nm) of acetaldehyde, propionaldehyde, and acetone was used to prepare mixtures of free radicals. The second-order rate constant of reaction (1) obtained from the data at 1 bar is: k1(He) = (0.8 ± 0.4) × 10−10exp(−(66.0 ± 3.4) kJ mol−1/RT) cm3 molecule−1 s−1. The HCO dissociation rate constants measured in this work are lower than those reported in the previous direct work. The difference is a factor of 2.2 at the highest temperature of the experiments and a factor of 3.5 at the low end. The experimental data indicate pressure dependence of the rate constant of dissociation of formyl radical 1, which was attributed to the early pressure fall-off expected based on the theory of isolated resonances. The UV absorption spectrum of HCO was revised. The maximum absorption cross-section of HCO is (7.3 ± 1.2) × 10−18 cm2 molecule−1 at 230 nm (temperature independent within the experimental error). The measured rate constants for reactions (2a), (2b), (2c), (3a) and (3b) are: k2 = (3.6 ± 0.8) × 10−11 cm3 molecule−1 s−1 (298 K); k3 = (9.3 ± 2.3) × 10−11 cm3 molecule−1 s−1(298 and 588 K).  相似文献   

20.
The interaction of Na9[SbW9O33]·19.5H2O (SbW) with bovine serum albumin (BSA) is studied by spectroscopic and voltammetric methods. Absorption spectroscopy of BSA and the linear sweep voltammetry of SbW proved the formation of ground-state SbW–BSA complex. Fluorescence quenching of serum albumin by SbW is also found to be a static quenching process. The binding constant Ka is 4.13×104 L mol−1 for SbW–BSA at pH 7.40 Tris–HCl buffer at 295 K. The number of binding sites and the apparent binding constants at different temperatures are obtained from the analysis of the fluorescence quenching data. The thermodynamic parameters determined by the Van’t Hoff analysis of the binding constants (ΔH=−80.01 kJ mol−1 and ΔS=−182.85 J mol−1 K−1) clearly show that the binding is absolutely entropy driven. Hydrogen bonding and van der Waals interaction force play major role in stabilizing the complex. The effect of SbW on the conformation of BSA is analyzed using synchronous fluorescence spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号