首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
气流作用下同轴带电射流的不稳定性研究   总被引:2,自引:0,他引:2  
李帅兵  杨睿  罗喜胜  司廷 《力学学报》2017,49(5):997-1007
通过对气体驱动同轴电流动聚焦的实验模型进行简化,开展了电场力和惯性力共同作用下同轴带电射流的不稳定性理论研究.在流动为无黏、不可压缩、无旋的假设下,建立了三层流体带电射流物理模型并得到了扰动在时间域内发展演化的解析形式色散关系,利用正则模方法求解色散方程发现了流动的不稳定模态,进而分析了主要控制参数对不稳定模态的影响.结果表明,在参考状态下轴对称模态的最不稳定增长率最大,因此轴对称扰动控制整个流场.外层气流速度越高,气体惯性力越大,射流的界面越容易失稳.内外层液-液同轴射流之间的速度差越大,射流越不稳定.表面张力对射流不稳定性起到促进作用.轴向电场对射流不稳定性具有双重影响:当加载电场强度较小时,射流不稳定性被抑制;当施加电压大于某一临界值时,轴向电场会促进射流失稳.临界电压的大小与界面上自由电荷密度和射流表面扰动发展关系密切.这些结果与已有的实验现象吻合,能够对实验的过程控制提供理论指导.  相似文献   

2.
为研究平面入射激波与磁化R22重质圆形气柱的作用过程,首先通过数值方法得到了不同初始条件下激波诱导R22气柱的Kelvin-Helmholtz (KH)及Richtmyer-Meshkov (RM)不稳定性导致的重气柱变形过程,并详细讨论了不同情况下透射激波在气柱内聚焦诱导射流的过程;然后在加入磁场的情况下,采用CTU+CT算法进行数值模拟,以保证数值结果满足任意时刻磁场的散度为零。计算结果表明:磁场对激波诱导R22气柱不稳定性具有抑制作用;法向磁场和流向磁场都可以很好地抑制RM不稳定性;对于KH不稳定性,法向磁场的控制效果更好,不仅可以抑制界面上涡串的卷起,还可以阻止主涡的发展,而流向磁场做不到后者;磁场对射流影响不大,射流处的磁能量可以一定程度上抑制射流的衰减,同时法向磁场可以减小聚焦时压力及速度峰值。  相似文献   

3.
The absolute instability of a ring jet with back-flow and swirl has been investigated on the basis of the inviscid linearized theory for incompressible flow. An axisymmetric disturbance mode is found to be only convectively unstable. The first azimuthal mode can become absolutely unstable, if the ring jet has a back-flow on the jet axis, and an additional swirl can increase the instability. However, for large swirl the absolute instability is suppressed. A ring jet without back-flow becomes absolutely unstable only in the presence of swirl.  相似文献   

4.
The present study deals with the local linear instability of axisymmetric coaxial jets with a duct wall separating the two streams. The flow is assumed to be locally parallel, inviscid and incompressible. The objective of the work is to understand how the various parameters describing this flow geometry (i.e. boundary layers thicknesses at the exit, velocity ratio, wall thickness) may influence the instability of the flow and, in particular, the convective/absolute instability transition. A specific family of profiles is chosen for the modelling of the mean undisturbed flow and a spatial stability analysis is performed in order to identify the unstable modes and to assess how they are affected by the wake region behind the wall. An absolutely unstable mode is found, and its characteristics, depending on the velocity ratio and shear layers thicknesses, are determined. Results show that the absolute unstable mode is present only for a limited range of velocity ratios and that the corresponding frequency is almost constant if normalized with the mean velocity and wake thickness. This frequency value and the extension of the range of velocity ratios is similar to those found in the experiments on a similar geometry. Finally, a specific velocity ratio is found that maximizes the region at the jet exit for which an absolute instability behind the wall is present. This may increase the possibility for the onset of a global mode that may sustain the instability of the whole jet, enhancing considerably the mixing and entrainment characteristics between the two streams.  相似文献   

5.
电场作用下无黏聚焦射流的时间不稳定性研究   总被引:1,自引:0,他引:1  
李广滨  司廷  尹协振 《力学学报》2012,44(5):876-883
基于电场作用下的流动聚焦实验建立了简化的理论模型,开展了带电同轴液气射流的时间不稳定性分析.在无黏假设下,得到了扰动在时间域内发展演化的解析形式的色散关系,分析了主要控制参数对不稳定模态的影响.结果表明,只有轴对称扰动和第一类非轴对称扰动在时间域内是增长的;液气界面的表面张力对轴对称扰动有着双重影响而对非轴对称扰动起抑制作用;外层气体的流速以及密度的增加均能促进射流的失稳.这些结论与实验结果是定性一致的.结果也表明,在不考虑初始界面电荷密度时,单一的轴向电场能抑制射流的失稳.   相似文献   

6.
The temporal instability of a particle-laden jet was investigated numerically which took into consideration the parametric effects of jet parameter, B, jet Reynolds number, Rej, particle mass loading, Z and Stokes number, St. The linear stability theory was used to derive the instability equations of a viscous particle-laden jet flow. The single-phase instability of a top-hat jet was then calculated and compared with the available analytical theories. The numerical results agree well with the analytical results for both the axisymmetric (n = 0) and first azimuthal (n = 1) modes. The results show that the first azimuthal mode disturbance is usually more unstable than that of the axisymmetric mode. But the axisymmetric mode disturbance can be more unstable when Z is high enough (i.e., Z ? 0.1). The higher B and Rej are, the more unstable the particle-laden jet will be. The existence of particles enhances the flow stability. With the increasing of Z, the jet flow will grow more stable. The inviscid single-phase jet is the most unstable. The wave amplification, ci first decreases with the increasing of St and then increases afterwards. There exist certain values of St, at which the jet is the most stable.  相似文献   

7.
This paper examines the linear hydrodynamic stability of an inviscid compound jet. We perform the temporal and the spatial analyses in a unified framework in terms of transforms. The two analyses agree in the limit of large jet velocity. The dispersion equation is explicit in the growth rate, affording an analytical solution. In the temporal analysis, there are two growing modes, stretching and squeezing. Thin film asymptotic expressions provide insight into the instability mechanism. The spatial analysis shows that the compound jet is absolutely unstable for small jet velocities and admits a convectively growing instability for larger velocities. We study the effect of the system parameters on the temporal growth rate and that of the jet velocity on the spatial growth rate. Predictions of both the temporal and the spatial theories compare well with experiment.Dedicated to the memory of Professor Tasos C. Papanastasiou  相似文献   

8.
The hydromagnetic capillary instability of a jet of inviscid, impressible fluid of infinite electrical conductivity and subjected to a uniform axial magnetic field is studied, taking into account an axial flow in the jet. The results show that while the axial flow promotes instability due to capillary effects and the axial-flow effects can be completely suppressed by a magnetic field of sufficient strength.  相似文献   

9.
Global linear stability analysis of the flow past a circular cylinder at the onset of primary wake instability is carried out. The real and imaginary parts of the most unstable eigenmode, responsible for vortex shedding, are very similar but associated with a spatial shift in the vortex structures. This shift results in the convection of vortices that are observed in the unsteady flow, which is actually a consequence of global absolute instability. The kinetic energy density, associated with the most unstable eigenmode, is studied. At the onset of the instability the energy density of the disturbance field is found to be stronger in the far wake compared with the near wake. With increase in Re the region where the disturbance is strong moves upstream closer to the cylinder. However, the maximum value of the kinetic energy density of the disturbance lies outside the recirculation zone even for Re upto 100. A linearized mechanical energy equation for the time evolution of the kinetic energy density of the disturbance is utilized to examine the energy budget of the most unstable eigenmode at various Re. It is found that the most significant contribution to the growth rate of the disturbance arises from the transfer of the energy due to the strain rate of the base flow to the perturbation. The stabilizing effect of the viscous dissipation increases with increase in Re, but saturates for Re beyond ~70. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a numerical study of magnetic effect on the formation of longitudinal vortices in a rotating laminar boundary layer. The criterion for the position marking the onset of longitudinal vortices is defined in this paper. The onset position characterized by the rotational Goertler number Gδ,rot, depends on the local rotation number, Reynolds number, the magnetic field parameter, the Prandtl number and the wave number. The results show that positive rotation destabilizes the flow. The flow is found to become more unstable to the vortex mode of instability as the value of magnetic field parameter M increases. The numerical data shows good agreement with the experimental results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The instability of the plane interface between two oldroydian viscoelastic superposed fluids in the presence of uniform rotation and variable magnetic field in porous medium is considered. For potentially stable configuration, the system is found to be stable for disturbances of all wave numbers. The magnetic field succeeds in stabilizing certain wave-number range, which were unstable in the absence of magnetic field and rotation for the potentially unstable configuration. Sub cases of magnetic free and rotation free configurations are also considered, separately.  相似文献   

12.
圆柱尾流的绝对不稳定性   总被引:3,自引:0,他引:3  
在水槽和低湍流度水洞中进行亚临界雷诺数圆柱尾流稳定性实验来流速度由零缓慢增长到一定值后保持不变,稳定足够长时间后,在流向某站位处给流场一个有限幅值的脉冲扰动,测量扰动前后相当长时间内下游尾流速度信号的变化情况当雷诺数处于高亚临界值时,未受扰动的尾流速度脉动很小,处于定常状态,但对近尾流进行脉冲扰动后,能够激发出不衰减的旋涡脱落发现扰动位置限制在圆柱后一定范围内才能有效,再往下游则扰动随时间衰减.说明圆柱近尾流中存在一个绝对不稳定区,在该区域内的扰动将在当地放大,经过复杂的演化,最后形成不衰减的旋涡脱落.  相似文献   

13.
The instability of a focused liquid jet is studied by semi-analytical methods and by methods of computational fluid dynamics. The semi-analytical approach relies on earlier work on the instability of an extending liquid thread and is based on the Stokes flow regime and small-amplitude perturbations. The evolution of different excitation modes is evaluated and compared. Through hydrodynamic focusing and the corresponding extensional flow an initially stable mode may become unstable and it depends on the position away from the inlet which mode is to be regarded as the most unstable one. When plotting a hypothetical jet decay length against the excitation wave number, a comparatively broad minimum is exhibited. The CFD simulations based on the volume-of-fluid method show that the jet may break up either in the conical focusing zone or in the attached capillary, depending on the flow velocity. When the deformation of the jet surface reaches a certain amplitude, the jet assumes a “beads-on-a-string” structure instead of a shape derived from a harmonic perturbation. A jet decay within the capillary produces elongated droplets with cusped ends. When comparing the results of the CFD and the semi-analytical model, it turns out that the CFD simulations predict more stable jets with a larger decay length. An analysis of the flow velocity field shows that the increased stability might be due to the interaction of the jet with the channel walls.  相似文献   

14.
从N-S方程出发,通过正则模方法,研究了超声速尾涡的绝对/对流不稳定性性质.计算了流动的稳定性特征随马赫数M,周向波数n.,轴向自由流速度W0和旋转度q等流动参数的变化规律,找到了绝对/对流不稳定区域的边界.通过比较发现,马赫数的增加使流动由绝对不稳定向对流不稳定乃至稳定转化.在所计算的参数范围,周向波数的增加加速了这一转化过程,而且,轴向速度的增加,同样使流动向着稳定的方向转化.同时还分析了不同旋拧程度的流动受可压缩影响的不同.这些结果对于了解旋拧流动稳定性的物理机理以及进行流动控制都有着重要意义.  相似文献   

15.
An annular liquid jet in a compressible gas medium has been examined using an Eulerian approach with mixed-fluid treatment. The governing equations have been solved by using highly accurate numerical methods. An adapted volume of fluid method combined with a continuum surface force model was used to capture the gas–liquid interface dynamics. The numerical simulations showed the existence of a recirculation zone adjacent to the nozzle exit and unsteady large vortical structures at downstream locations, which lead to significant velocity reversals in the flow field. It was found that the annular jet flow is highly unstable because of the existence of two adjacent shear layers in the annular configuration. The large vortical structures developed naturally in the flow field without external perturbations. Surface tension tends to promote the Kelvin–Helmholtz instability and the development of vortical structures that leads to an increased liquid dispersion. A decrease in the liquid sheet thickness resulted in a reduced liquid dispersion. It was identified that the liquid-to-gas density and viscosity ratios have opposite effects on the flow field with the reduced liquid-to-gas density ratio demoting the instability and the reduced liquid-to-gas viscosity ratio promoting the instability characteristics.  相似文献   

16.
Spatial instability waves associated with lowfrequency noise radiation at shallow polar angles in the chevron jet are investigated and are compared to the round counterpart. The Reynolds-averaged Navier–Stokes equations are solved to obtain the mean flow fields, which serve as the baseflow for linear stability analysis. The chevron jet has more complicated instability waves than the round jet, where three types of instability modes are identified in the vicinity of the nozzle, corresponding to radial shear, azimuthal shear,and their integrated effect of the baseflow, respectively. The most unstable frequency of all chevron modes and round modes in both jets decrease as the axial location moves downstream. Besides, the azimuthal shear effect related modes are more unstable than radial shear effect related modes at low frequencies. Compared to a round jet, a chevron jet reduces the growth rate of the most unstable modes at downstream locations. Moreover, linearized Euler equations are employed to obtain the beam pattern of pressure generated by spatially evolving instability waves at a dominant low frequency St = 0.3, and the acoustic efficiencies of these linear wavepackets are evaluated for both jets. It is found that the acoustic efficiency of linear wavepacket is able to be reduced greatly in the chevron jet, compared to the round jet.  相似文献   

17.
流动聚焦是一种有效的微细射流产生方法,其原理可以描述为从毛细管流出的流体由另一种高速运动的流体驱动,经小孔聚焦后形成稳定的锥–射流结构,射流因不稳定性破碎成单分散的液滴.自从1998年流动聚焦被提出以来,陆续发展了单轴流动聚焦、电流动聚焦、复合流动聚焦和微流控流动聚焦等毛细流动技术.这些技术稳定、易操作、没有苛刻的环境条件的要求,能够制备单分散性较好的微纳米量级的液滴、颗粒和胶囊,在科学研究和实际应用中具有重要价值.流动聚焦涉及了多尺度、多界面和多场耦合的复杂流体力学问题,其中稳定的锥形是形成稳定射流的先决条件,过程参数是影响射流界面扰动发展的关键因素,而射流不稳定性分析是揭示射流破碎的最主要理论工具.该文回顾了近二十年来不同结构流动聚焦的研究进展,概述这些技术涉及的过程控制、流动模式、尺度律和不稳定性分析等关键力学问题,总结射流不稳定性的研究方法和已取得的成果,最后展望流动聚焦的研究方向和应用前景.  相似文献   

18.
Experiments on capillary flow of non-Newtonian liquids exhibit a pronounced jet instability at high enough flow rates. A simple criterion for the onset of instability is proposed. The physical model draws on analogies with elastic solids. The model predicts a pressure dependence that is not only a function of pressure difference.  相似文献   

19.
The flow instability of nanofluids in a jet is studied numerically under various shape factors of the velocity profile, Reynolds numbers, nanoparticle mass loadings,Knudsen numbers, and Stokes numbers. The numerical results are compared with the available theoretical results for validation. The results show that the presence of nanoparticles enhances the flow stability, and there exists a critical particle mass loading beyond which the flow is stable. As the shape factor of the velocity profile and the Reynolds number increase, the flow becomes more unstable. However, the flow becomes more stable with the increase of the particle mass loading. The wavenumber corresponding to the maximum of wave amplification becomes large with the increase of the shape factor of the velocity profile, and with the decrease of the particle mass loading and the Reynolds number. The variations of wave amplification with the Stokes number and the Knudsen number are not monotonic increasing or decreasing, and there exists a critical Stokes number and a Knudsen number with which the flow is relatively stable and most unstable,respectively, when other parameters remain unchanged. The perturbation with the first azimuthal mode makes the flow unstable more easily than that with the axisymmetric azimuthal mode. The wavenumbers corresponding to the maximum of wave amplification are more concentrated for the perturbation with the axisymmetric azimuthal mode.  相似文献   

20.
流动聚焦是一种有效的微细射流产生方法,其原理可以描述为从毛细管流出的流体由另一种高速运动的流体驱动,经小孔聚焦后形成稳定的锥–射流结构,射流因不稳定性破碎成单分散的液滴.自从1998年流动聚焦被提出以来,陆续发展了单轴流动聚焦、电流动聚焦、复合流动聚焦和微流控流动聚焦等毛细流动技术.这些技术稳定、易操作、没有苛刻的环境条件的要求,能够制备单分散性较好的微纳米量级的液滴、颗粒和胶囊,在科学研究和实际应用中具有重要价值.流动聚焦涉及了多尺度、多界面和多场耦合的复杂流体力学问题,其中稳定的锥形是形成稳定射流的先决条件,过程参数是影响射流界面扰动发展的关键因素,而射流不稳定性分析是揭示射流破碎的最主要理论工具.该文回顾了近二十年来不同结构流动聚焦的研究进展,概述这些技术涉及的过程控制、流动模式、尺度律和不稳定性分析等关键力学问题,总结射流不稳定性的研究方法和已取得的成果,最后展望流动聚焦的研究方向和应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号