首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Awazu   《Journal of Non》1999,260(3):242-244
It has been well known that the absorption maximum of the peak near 1080 cm−1 in amorphous SiO2 films shifts continuously with variation of thickness and properties such as stress. This is a first report on the oscillator strength of the absorption against frequency at the absorption maximum. SiO2 films on silicon wafers were prepared by thermal growth in either dry O2 or an O2/H2 mixture or liquid-phase deposition in HF saturated with silica gel. The oscillator strength continuously decreased from 1×10−4 down to 1×10−5 with the frequency shift from 1099 to 1063 cm−1.  相似文献   

2.
Doped amorphous silicon films were prepared by plasma-enhanced chemical vapour deposition of silane and hydrogen mixtures, using phosphorus pentafluoride (PF5) and boron trifluoride (BF3) as dopant precursors. The films were studied by UV-vis spectroscopy and their photo and dark conductivity were measured, the latter as a function of temperature. The optical gap of the n-type samples, doped with PF5, diminished as the concentration of this gas in the plasma was increased. However, the optical gap of p-type samples, doped with BF3, did not show any appreciable optical gap decrease as the concentration of BF3 was varied from 0.04% to 4.7%. The dark conductivity of the p-type films at these extremes of the doping range were 7.6 × 10−10 and 3.5 × 10−1 Ω−1 cm−1, respectively.  相似文献   

3.
The (Pb0.90La0.10)TiO3 [PLT] thick films (3.0 μm) with a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering method. The PLT thick films comprise five periodicities, the layer thicknesses of (Pb0.90La0.10)TiO3 and PbO in one periodicity are fixed. The PbO buffer layer improves the phase purity and electrical properties of the PLT thick films. The microstructure and electrical properties of the PLT thick films with a PbO buffer layer were studied. The PLT thick films with a PbO buffer layer possess good electrical properties with the remnant polarization (Pr=2.40 μC cm−2), coercive field (Ec=18.2 kV cm−1), dielectric constant (εr=139) and dielectric loss (tan δ=0.0206) at 1 kHz, and pyroelectric coefficient (9.20×10−9 C cm−2 K−1). The result shows the PLT thick film with a PbO buffer layer is a good candidate for pyroelectric detector.  相似文献   

4.
This paper reports the growth and spectral properties of 3.5 at% Nd3+:LaVO4 crystal with diameter of 20×15 mm2 which has been grown by the Czochralski method. The spectral parameters were calculated based on Judd–Ofelt theory. The intensity parameters Ωλ are: Ω2=2.102×10−20 cm2, Ω4=3.871×10−20 cm2, Ω6=3.235×10−20 cm2. The radiative lifetime τr is 209 μs and calculated fluorescence branch ratios are: β1(0.88μm)=45.2, β2(1.06μm)=46.7, β3(1.34μm)=8.1. The measured fluorescence lifetime τf is 137 μm and the quantum efficiency η is 65.6%. The absorption band at 808 nm wavelength has an FWHM of 20 nm. The absorption and emission cross sections are 3×10−20 and 6.13×10−20 cm2, respectively.  相似文献   

5.
A new crystal of Nd3+:Sr3Y(BO3)3 with dimension up to 25×35 mm2 was grown by Czochralski method. Absorption and emission spectra of Nd3+: Sr3Y(BO3)3 were investigated . The absorption band at 807 nm has a FWHM of 18 nm. The absorption and emission cross sections are 2.17×10−20 cm2 at 807 nm and 1.88×10−19 cm2 at 1060 nm, respectively. The luminescence lifetime τf is 73 μs at room temperature  相似文献   

6.
Vitreous BeF2 was prepared by two techniques; (1) remelting of a technical grade material, and (2) vacuum distillation/fluoridation. Infrared spectroscopy studies have established that the first material contains about 0.5 wt.% hydroxyl, predicted to be coherently incorporated into the vitreous network as edge-linked [Be(OH)4]2− units. The distilled BeF2 is water-free. The dc electrical conductivity of the remelted BeF2 was measured as σ = (7.9 × 103/T) exp(−24500 cal/mol/RT) ω−1 cm−1 and for the distilled BeF2 as σ = (3.0 × 105/T) exp(−36700 cal/mol/RT ω−1 cm−1 at temperatures to 280°C. Ionic transport studies utilizing a dc electrolysis polarization technique with N2−F2 and H2−HF gas electrodes have demonstrated that the fluorine ion is the transport species. A general model for fluorine transport is proposed based upon a modified anti-Frenkel defect model. The difference in the fluorine transport process for the undistilled grade of BeF2 is seen as a consequence of the anti-Frenkel defect pair interaction with the [Be(OH)4[2− groupings.  相似文献   

7.
Effects of the oxygen partial pressure on pulsed-laser deposition of MgO buffer layers on silicon substrates were investigated. The overall growth process was monitored in situ by reflection high-energy electron diffraction (RHEED) method. It was found that the crystallinity and surface morphology of the MgO films were strongly affected by oxygen partial pressure in the deposition chamber. The oxygen-pressure dependence could be explained in terms of interactions of oxygen with species in the plume-like plasma. The MgO film obtained at an optimal oxygen-pressure range of 1×10−2–1 Pa exhibited an atomic-smooth and defect-free surface (the root-mean-square roughness being as low as 0.82 nm). For the metal–insulator–metal (MIM) structure of Au/MgO (150 nm)/TiN prepared at the optimal growth conditions achieved a very low leak current density of 10−7 A cm−2 at an electric field of 8×105 V cm−1 and the permittivity (εr) of about 10.6, virtually the same as that of the bulk MgO single crystals.  相似文献   

8.
The influence of oxygen contamination on Si low pressure vapour phase epitaxy (LPVPE) at 800°C in the SiCl2H2−H2 system has been investigated. O2 was added intentionally with partial pressures between 10−8 and 2×10−4 mbar. The quality of the epitaxially grown silicon layers was determined by comparing surface morphology, defect density, Schottky diode characteristics and SIMS measurements. These four parameters are correlated and they reveal a drastic decrease in epitaxial layer quality for O2 pressures above 15×10−6 mbar. The critical oxygen pressure which has been until now considered as a limit for epitaxial growth can therefore be exceeded by one order of magnitude.  相似文献   

9.
Measurements of solid phase dopant concentration (S) of LPCVD Si thin films as a function of substrate temperature (Ts = 500−640 ° C) and gas phase doping ratio (R = 1 × 10−5 −4 × 10−2) by SIMS indicate different behaviors of P and B in the films. A linear relation S = b(T)R is observed for B-doped film with b(T) varying from 4 to 50 depending on Ts. Boron-doped microcrystalline film has a higher doping efficiency than that of P-doped ones.  相似文献   

10.
The effects of ion implantation on the properties of spin-on sol–gel Ba0.7Sr0.3TiO3 (BST) thin films were studied by implanted Ar+, N+, and F+ doses. The F+-implanted BST samples present leakage current density <10−6 A/cm2 at 2.5 V and dielectric constant 450. The leakage current of F+-implanted BST samples was reduced about one order of magnitude as compared with that of samples with implanted Ar+, N+ or without implantation. The thickness shrinkage from 135 to 115 nm was observed in F+-implanted BST films (before annealing treatment) and a respective increase in the refractive index from 1.84 to 2.05 was measured. After annealing the implanted samples, the changes of thickness and refractive index depend on the concentration of implanted dose. Based on an infrared transmission study of the samples we suggest that the ion-implanted samples with smaller dose (5×1014 cm−2) have fewer −OH contaminants than the non-implanted or implanted samples with the larger doses (1×1015 cm−2). Based on the results presented, we conclude that suitable ion implantation densifies the spin-on sol–gel BST films and reduces the −OH contaminants in the films.  相似文献   

11.
In this article, multiple-step rapid thermal annealing (RTA) processes for the activation of Mg doped GaN are compared with conventional single-step RTA processes. The investigated multiple-step processes consist of a low temperature annealing step at temperatures between 350°C and 700°C with dwell times up to 5 min and a short time high temperature step. With optimized process parameters, and multiple-step processes, we achieved p-type free carrier concentrations up to 1–2×1018 cm−3. The best achieved conductivity, so far, lies at 1.2 Ω−1 cm−1. This is a 50% improvement compared to conventional single-step process at 800°C, 10 min.  相似文献   

12.
Heavily carbon-doped p-type InxGa1−xAs (0≤x<0.49) was successfully grown by gas-source molecular beam epitaxy using diiodomethane (CH2I2), triethylindium (TEIn), triethylgallium (TEGa) and AsH3. Hole concentrations as high as 2.1×1020 cm−3 were achieved in GaAs at an electrical activation efficiency of 100%. For InxGa1−xAs, both the hole and the atomic carbon concentrations gradually decreased as the InAs mole fraction, x, increased from 0.41 to 0.49. Hole concentrations of 5.1×1018 and 1.5×1019 cm−3 for x = 0.49 and x = 0.41, respectively, were obtained by a preliminary experiment. After post-growth annealing (500°C, 5 min under As4 pressure), the hole concentration increased to 6.2×1018 cm−3 for x = 0.49, probably due to the activation of hydrogen-passivated carbon accepters.  相似文献   

13.
E Prasad  M Sayer  H.M Vyas 《Journal of Non》1980,40(1-3):119-134
Glasses of composition 65 mol% LiNbO3:: 35 mol% SiO2 have been shown to be Li+ ion conductors with a conductivity at 200°C > 1 × 10−5 (η cm)−1 and an activation energy of 0.54 eV. The addition of approximately 0.1 mol% Fe2O3 leads to an enhancement of conductivity to ≈10−3 (η cm)−1 at 200°C and an activation energy of 0.67 eV. The effect of Fe is shown to be in the control of microstructure in the glass, with Fe2O3 concentrations < 1 mol% acting as a grain growth inhibitors and larger concentrations acting as a nucleating agents. A model for this process based on the expected stoichiometry of the melt and the effect of Fe2+ and Fe3+ in charge compensation is in excellent agreement with experimental data from electron spin resonance.  相似文献   

14.
Heavily magnesium-doped p-type-InGaAs layers on InP(100) substrates were successfully grown, for the first time, by low-pressure metalorganic chemical vapor deposition (MOCVD) using bis-ethylcyclopentadienyl-magnesium, (C2H5C5H4)2Mg (EtCp2Mg), as organometallic precursor for the Mg. It was experimentally verified that the room-temperature hole concentration of Mg into InGaAs increased with increase of the V/III ratio and decrease of the growth temperature. A maximum hole concentration of over 4 × 1019 cm−3 was obtained. The diffusion coefficient of Mg in InGaAs was experimentally derived to be 10−12 cm2/s at 800°C, which was comparable to that of Be. Finally, InP/InGaAs heterojunction bipolar transistors (HBTs) with Mg-doped bases were fabricated successfully. Measured maximum current gain was about 320 with a 90 nm thick base and a sheet resistance of the base layer of 1.28 kΩ/sq.  相似文献   

15.
A new highly sensitive method is described for the measurement of optical absorption and its wavelength dependence in extremely low loss materials (e.g. starting materials for optical fibres). The optical absorption — as distinct from scattering losses — is measured calorimetrically at low temperatures via the temperature rise due to the absorbed heat. Low temperature as compared with room temperature calorimetry is several orders of magnitude more sensitive due to the drastically decreased specific heat and the higher resolution of the temperature measurements. We have measured an optical absorption coefficient as low as 3 dB km−1 (7 × 10−6 cm−1) in a Suprasil I glass rod of only 5 cm in length. In principle, by our method absorption coefficients even smaller than 10−6 cm−1 can be determined in a sample of the same length. Since the optical power necessary for this method amounts to only a few mW no single strong laser lines are required as in room temperature calorimetry and also low power light sources which are continuously tunable can be used.

Our method is also sensitive enough to distinguish between absorption in the bulk and at the surfaces. Measurements on Suprasil I samples show an absorption peak around 600 nm probably due to OH-impurities in the bulk and a background absorption caused by dissipative processes at the two surfaces.  相似文献   


16.
We have grown undoped, Si- and Mg-doped GaN epilayers using metalorganic chemical vapor deposition. The grown samples have electron Hall mobilities (carrier concentrations) of 798 cm2/V s (7×1016 cm−3) for undoped GaN and 287 cm2/V s (2.2×1018 cm−3) for Si-doped GaN. Mg-doped GaN shows a high hole concentration of 8×1017 cm−3 and a low resistivity of 0.8 Ω cm. When compared with undoped GaN, Si and Mg dopings increase the threading dislocation density in GaN films by one order and two orders, respectively. Besides, it was observed that the Mg doping causes an additional biaxial compressive stress of 0.095 GPa compared with both undoped and Si-doped GaN layers, which is due to the incorporation of large amount of Mg atoms (4–5×1019 cm−3).  相似文献   

17.
Experimental results are presented for SiC epitaxial layer growths employing a unique planetary SiC-VPE reactor. The high-throughput, multi-wafer (7×2″) reactor, was designed for atmospheric and reduced pressure operation at temperatures up to and exceeding 1600°C. Specular epitaxial layers have been grown in the reactor at growth rates ranging from 3–5 μm/h. The thickest layer grown to date is 42 μm thick. The layers exhibit minimum unintentional n-type doping of 1×1015 cm−3, and room temperature mobilities of 1000 cm2/V s. Intentional n-type doping from 5×1015 cm−3 to >1×1019 cm−3 has been achieved. Intrawafer layer thickness and doping uniformities (standard deviation/mean at 1×1016 cm−3) are typically 4 and 7%, respectively, on 35 mm diameter substrates. Moderately doped, 4×1017 cm−3, layers, exhibit 3% doping uniformity. Recently, 3% thickness and 10% doping uniformity (at 1×1016 cm−3) has been demonstrated on 50 mm substrates. Within a run, wafer-to-wafer thickness deviation averages 9%. Doping variation, initially ranging as much as a factor of two from the highest to the lowest doped wafer, has been reduced to 13% at 1×1016 cm−3, by reducing susceptor temperature nonuniformity and eliminating exposed susceptor graphite. Ongoing developments intended to further improve layer uniformity and run-to-run reproducibility, are also presented.  相似文献   

18.
The reflectance spectra of ion implanted SiO2 glasses has been measured from 5000 cm−1 to 400 cm−1. The silica was implanted with Ti, Cr, Mn, Fe, Cu and Bi to nominal doses ranging from 1×1015 ions/cm2 to 1.2×1017 ions/cm2 at an energy of 160 keV and currents of approximately 2.6 μA/cm2. Changes in the intensity of the 1232 cm−1 and 1015 cm−1 vibrational modes are attributed to changes in the intermediate range order (IRO) and to changes in the concentration of non-bridging oxygen (NBO) defects in the implanted layer. These changes are ion and dose dependent. The differing effects on IRO and NBO are attributed to the chemical interaction of the implanted ions with the substrate.  相似文献   

19.
We have fabricated a ZnSe diode using Li3N diffusion technique for the purpose of forming p-type ZnSe. The maximum hole concentration in the Li3N-diffused ZnSe layer, which has been grown on a GaAs substrate by metalorganic vapor phase epitaxy, was as high as 1018 cm−3. The ohmic contact to the p-type ZnSe has been demonstrated and the specific contact resistance of Au/p-ZnSe was 1 × 10−2 Ω · cm2. The Li3N diffusion technique is useful for the bfabrication of ohmic contacts to p-ZnSe.  相似文献   

20.
The lower cost and higher hydrophilicity of silica xerogels could make them potential substitutes for perfluorosulfonic polymeric membranes in proton exchange membrane fuel cells (PEMFCs). For that purpose, we need to obtain micro or micro and mesoporous silica xerogels with a high porosity. The preparation of micro (<2 nm) and micro and mesoporous silica xerogels (2<dporesize10 nm) from particulate as oppossed to polymeric suspensions of silica using tetraethyl orthosilicate (TEOS) as precursor is used. Two techniques of varying packing density have been performed in this work: (1) Control of the aggregation degree in the sol by adjusting its pH before gelation (pH 5, 6 and 8) and (2) Mixture of sols with a different average particle size (particles formed under acid and base catalyzed reactions). Proton conductivity of the obtained xerogels was studied as a function of temperature and relative humidity (RH). High pore volume, high porosity and small pore size SiO2 xerogels have been achieved in the calcination temperature range from 250 to 550 °C. The calcined xerogels showed microporosity or micro and mesoporosity in the whole range of calcination temperatures. By mixing sols (molar ratio: acid/base=4.8) porosities up to 54.7±0.1% are achieved, at 250 °C of firing temperature. According to EMF measurements, electrical transport is due to protons in this kind of materials. The proton conductivity of the studied xerogels increased linear with measured temperature. A S-shaped dependence of the conductivity with the RH was observed with the greatest increase noted between 58% and 81% RH. Xerogels with a low porosity (40.8±0.1%) and an average pore size less than 2.0 nm showed lower values of proton conductivity than that of xerogels with a higher porosity and a higher average pore size in the whole range of temperature and RH. When silica xerogels, with the highest conductivity, are treated at pH 1.5, that property increased from 2.84×10−3±5.11×10−5 S/cm to 4.0×10−3±7.2×10−5 S/cm, at 81% RH and 80 °C. It indicates that the surface site density of these materials has a strong effect on conductivity. Proton conductivity values achieved are less than one order of magnitude lower than that of Nafion, under the same conditions of temperature and RH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号