首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
The FeII complexes of two isomeric pentadentate bispidine ligands in the presence of H2O2 are catalytically active for the epoxidation and 1,2-dihydroxylation of cyclooctene (bispidine = 3,7-diazabicyclo[3.3.1]nonane; the two isomeric pentadentate bispidine ligands discussed here have two tertiary amine and three pyridine donors). The published spectroscopic and mechanistic data, which include an extensive set of 18O labeling experiments, suggest that the FeIV=O complex is the catalytically active species, which produces epoxide as well as cis- and trans-1,2-dihydroxylated products. Several observations from the published experimental study are addressed with hybrid density functional methods and, in general, the calculations support the proposed, for nonheme iron model systems novel mechanism, where the formation of a radical intermediate emerges from the reaction of the FeIV=O oxidant and cyclooctene. The calculations suggest that the S = 1 ground state of the FeIV=O complex reacts with cyclooctene in a stepwise reaction, leading to the formation of a carbon-based radical intermediate. This radical is captured by O2 from air to produce the majority of the epoxide products in an aerobic atmosphere. Under anaerobic conditions, the produced epoxide product is due to the cyclization of the radical intermediate. Several possible spin states (ST = 3, 2, 1, 0) of the radical intermediate are close in energy. As a result of the substantial energy barrier, calculated for the ST = 3 spin ground state, a spin-crossover during the cyclization step is assumed, and a possible two-state scenario is found, where the S = 2 state of the FeIV=O complex participates in the catalytic mechanism. The 1,2-dihydroxylation proceeds, as suggested by experiment, via an unprecedented pathway, where the radical intermediate is captured by a hydroxyl radical, the source of which is FeIII-OOH, and this reaction is barrierless. The calculations suggest that dihydroxylation can also occur by a direct oxidation pathway from FeIII-OOH. The strikingly different reactivities observed with the two isomeric bispidine FeII complexes are rationalized on the basis of structural and electronic differences.  相似文献   

2.
Experimental and DFT-based computational results on the aziridination mechanism and the catalytic activity of (bispidine)copper(I) and -copper(II) complexes are reported and discussed (bispidine=tetra- or pentadentate 3,7-diazabicyclo[3.1.1]nonane derivative with two or three aromatic N donors in addition to the two tertiary amines). There is a correlation between the redox potential of the copper(II/I) couple and the activity of the catalyst. The most active catalyst studied, which has the most positive redox potential among all (bispidine)copper(II) complexes, performs 180 turnovers in 30 min. A detailed hybrid density functional theory (DFT) study provides insight into the structure, spin state, and stability of reactive intermediates and transition states, the oxidation state of the copper center, and the denticity of the nitrene source. Among the possible pathways for the formation of the aziridine product, the stepwise formation of the two N-C bonds is shown to be preferred, which also follows from experimental results. Although the triplet state of the catalytically active copper nitrene is lowest in energy, the two possible spin states of the radical intermediate are practically degenerate, and there is a spin crossover at this stage because the triplet energy barrier to the singlet product is exceedingly high.  相似文献   

3.
The synthesis of a series of tetra‐ and pentadentate bispidine‐type ligands (bispidine=3,7‐diazabicyclo[3.3.1]nonane) – tetradentate ligands are donor‐substituted at C(2) and C(4), pentadentate ligands have an additional donor at N(3) or N(7), with pyridine, 2‐methylpyridine, or quinoline donor moieties – and of their CuII complexes are reported, together with single‐crystal structural analyses and solution studies (electrochemistry, electronic and EPR spectroscopy). Depending on the ligand geometry and on the co‐ligands (solvent or counter anion), there are various structural forms (pseudo‐Jahn–Teller elongation along all three molecular axes), and the structural data are correlated with the spectroscopic and electrochemical parameters.  相似文献   

4.
Transition metal complexes with 2,4-substituted tetradentate, 2,3,4- and 2,4,7-substituted pentadentate, and 2,3,4,7-substituted hexadentate bispidine ligands (bispidine = 3,7-diazabicyclo[3.3.1]nonane) with two tertiary amine and two, three, or four pyridine donors are relatively stable (10 < log K(CuL) < 18). Interestingly, the two isomeric pentadentate ligands have very different stabilities with a variety of metal ions and, depending on the metal ion, one of the isomers leads to more stable complexes than the hexadentate and the other to less stable complexes than the tetradentate ligand. Another interesting observation is that the complex stabilities of all bispidine ligands reported here do not follow the Iriving-Williams series since the stability constants of the cobalt(II) complexes are up to 4 log units larger than those of the corresponding nickel(II) complexes. All these observations are analyzed on the basis of subtle distortions of the coordination geometries, and these have been related previously to Jahn-Teller-derived distortions for the copper(II) complexes. However, similar but less pronounced structural properties are observed with other metal centers, as shown, e.g., with the experimental structures of the two zinc(II) complexes with the isomeric pentadentate ligands reported here. The structural properties and the related stabilities are also discussed on the basis of force field calculations.  相似文献   

5.
Infrared photodissociation spectroscopy in the N-N stretching region is reported for gas-phase Nb+(N2)n complexes (n=3-16). The coordination of nitrogen to the metal cation causes the IR-forbidden N-N stretch of N2 to become active in these complexes. Fragmentation occurs by the loss of intact N2 molecules, and the yield as a function of laser wavelength produces an IR excitation spectrum. The dissociation patterns indicate that Nb+ has a coordination of six ligands. The infrared spectra for all complexes contain bands red-shifted from the N-N stretch in free nitrogen, consistent with ligand-metal charge-transfer interactions such as those familiar for metal carbonyl complexes. Using density functional theory, we investigated the structures and ground electronic states for each of the small cluster sizes. Theory indicates that binding to the low-spin triplet excited state of the metal ion becomes progressively more favorable than binding to its high-spin quintet ground state as additional ligands are added to the cluster. Although the quintet state is the ground state for the n=1-4 complexes, IR spectroscopy confirms that the low-spin triplet electronic state becomes the ground state for the n=5 and 6 complexes. The n=4 complex has a square-planar structure, familiar for high-spin d4 complexes in the condensed phase. The n=5 complex has a geometry that is nearly a square pyramid, while the n=6 complex has a structure close to octahedral.  相似文献   

6.
Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state.  相似文献   

7.
de Visser SP  Oh K  Han AR  Nam W 《Inorganic chemistry》2007,46(11):4632-4641
The hydroxylation of aromatic compounds by mononuclear nonheme iron(IV)-oxo complexes, [FeIV(Bn-tpen)(O)]2+ (Bn-tpen=N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine) and [FeIV(N4Py)(O)]2+ (N4Py=N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), has been investigated by a combined experimental and theoretical approach. In the experimental work, we have performed kinetic studies of the oxidation of anthracene with nonheme iron(IV)-oxo complexes generated in situ, thereby determining kinetic and thermodynamic parameters, a Hammett rho value, and a kinetic isotope effect (KIE) value. A large negative Hammett rho value of -3.9 and an inverse KIE value of 0.9 indicate that the iron-oxo group attacks the aromatic ring via an electrophilic pathway. By carrying out isotope labeling experiments, the oxygen in oxygenated products was found to derive from the nonheme iron(IV)-oxo species. In the theoretical work, we have conducted density functional theory (DFT) calculations on the hydroxylation of benzene by [FeIV(N4Py)(O)]2+. The calculations show that the reaction proceeds via two-state reactivity patterns on competing triplet and quintet spin states via an initial rate determining electrophilic substitution step. In analogy to heme iron(IV)-oxo catalysts, the ligand is noninnocent and actively participates in the reaction mechanism by reshuttling a proton from the ipso position to the oxo group. Calculated kinetic isotope effects of C6H6 versus C6D6 confirm an inverse isotope effect for the electrophilic substitution pathway. Based on the experimental and theoretical results, we have concluded that the aromatic ring oxidation by mononuclear nonheme iron(IV)-oxo complexes does not occur via a hydrogen atom abstraction mechanism but involves an initial electrophilic attack on the pi-system of the aromatic ring to produce a tetrahedral radical or cationic sigma-complex.  相似文献   

8.
Iron-bispidine complexes are efficient catalysts for the oxidation of thioanisole to phenylmethylsulfoxide with iodosylbenzene as oxidant. With the tetradentate bispidine ligand L(1) (L(1) = 2,4-pyridyl-3,7-diazabicyclo[3.3.1]nonane)) the catalytic efficiency is smaller than with the pentadentate bispidine ligand L(2) (L(2) = 2,4-pyridyl-7-(pyridine-2-ylmethyl)-3,7-diazabicyclo[3.3.1]nonane)). Based on the redox potentials (iron complexes with L(1) are stronger oxidants than with L(2)) and known efficiencies in catalytic olefin oxidation and C-H activation reactions, the expectations were different. A DFT-based analysis is used to explain the apparent contradiction, and this is based on differences in the electronic ground states of the ferryl complexes as well as in the oxygen transfer transition states.  相似文献   

9.
On the basis of the data obtained by X-ray diffraction, the properties of two independent crystallographic subsystems in the [Fe(tpen)](ClO4)2.2/3H2O complex are studied in detail with the density functional method B3LYP. The energies of singlet, triplet, and quintet states at different temperatures are obtained, the influences of geometry on energy changes are analyzed, the regularity of the spin-state interconversions is investigated, and the effect of the triplet and action of the anion on spin crossover are discussed. This investigation demonstrates that (1) the energy difference between the high-spin state and singlet state decreases as the Fe-N distance and geometric distortion increase, (2) the spin-equilibrium system is predominantly in low-spin form below room temperature and the proportion of high-spin state rapidly increases above room temperature, (3) one of the two cation sites has a greater presence of the high-spin content, (4) the triplet state may be responsible for the fast rate of spin-state interconversions, and (5) the B3LYP method proves to be very adequate to study the spin-state transition of this complex.  相似文献   

10.
Spectroscopic and electronic structure studies of the class I Escherichia coli ribonucleotide reductase (RNR) intermediate X and three computationally derived model complexes are presented, compared, and evaluated to determine the electronic and geometric structure of the FeIII-FeIV active site of intermediate X. Rapid freeze-quench (RFQ) EPR, absorption, and MCD were used to trap intermediate X in R2 wild-type (WT) and two variants, W48A and Y122F/Y356F. RFQ-EPR spin quantitation was used to determine the relative contributions of intermediate X and radicals present, while RFQ-MCD was used to specifically probe the FeIII/FeIV active site, which displayed three FeIV d-d transitions between 16,700 and 22,600 cm(-1), two FeIV d-d spin-flip transitions between 23,500 and 24,300 cm(-1), and five oxo to FeIV and FeIII charge transfer (CT) transitions between 25,000 and 32,000 cm(-1). The FeIV d-d transitions were perturbed in the two variants, confirming that all three d-d transitions derive from the d-pi manifold. Furthermore, the FeIV d-pi splittings in the WT are too large to correlate with a bis-mu-oxo structure. The assignment of the FeIV d-d transitions in WT intermediate X best correlates with a bridged mu-oxo/mu-hydroxo [FeIII(mu-O)(mu-OH)FeIV] structure. The mu-oxo/mu-hydroxo core structure provides an important sigma/pi superexchange pathway, which is not present in the bis-mu-oxo structure, to promote facile electron transfer from Y122 to the remote FeIV through the bent oxo bridge, thereby generating the tyrosyl radical for catalysis.  相似文献   

11.
Bautz J  Comba P  Que L 《Inorganic chemistry》2006,45(18):7077-7082
The iron(II) complex of a tetradentate bispidine ligand with two tertiary amines and two pyridine groups (L = dimethyl [3,7-dimethyl-9,9'-dihydroxy-2,4-di-(2-pyridyl)-3,7-diazabicyclo nonan-1,5-dicaboxylate]) is oxidized with tert-butyl hydroperoxide to the corresponding end-on tert-butylperoxo complex [Fe(III)(L)(OOtBu)(X)]n+ (X = solvent, anion). UV-vis, resonance Raman, and EPR spectroscopy, as a function of the solvent, show that this is a spin-crossover compound. The experimentally observed Raman vibrations for both low-spin and high-spin isomers are in good agreement with those computed by DFT.  相似文献   

12.
As a model system for the photoinduced/photoswitched spin alignment in a purely organic pi-conjugated spin system, 9-[4-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (1a), 9-[3-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (1b), 9,10-bis[4-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (2a), and 9,10-bis[3-(4,4,5,5-tetramethyl-1-yloxyimidazolin-2-yl)phenyl]anthracene (2b) were designed and synthesized. In these spin systems, 9-phenylanthracene and 9,10-diphenylanthracene were chosen as photo spin couplers and iminonitroxide was chosen as a dangling stable radical. Time-resolved electron spin resonance (TRESR) spectra of the first excited states with resolved fine-structure splittings were observed for 1a and 2a in an EPA or a 2-MTHF rigid glass matrix. Using the spectral simulation based on the eigenfield method, the observed TRESR spectra for 1a and 2a were unambiguously assigned as an excited quartet (S = 3/2) spin state (Q) and an excited quintet (S = 2) spin state (Qu), respectively. The g value and fine-structure splitting for the quartet state of 1a were determined to be g(Q) = 2.0043, D(Q) = 0.0235 cm(-1), and E(Q) = 0.0 cm(-1). The relative populations (polarization) of each M(S)() sublevel in Q were determined to be P(+1/2') = P(-1/2') = 0.5 and P(+3/2') = P(-3/2') = 0.0 with an increasing order of energy in zero magnetic field. The spin Hamiltonian parameters for Qu are g = 2.0043, D = 0.0130 cm(-1), and E = 0.0 cm(-1), and the relative populations in Qu were determined to be P(0') = 0.30, P(-1') = P(+1') = 0.35 and P(-2') = P(+2') = 0.0. These are the first observations of a photoexcited quartet and a quintet high-spin state in pi-conjugated triplet-radical pair systems. In contrast high-spin excited states were not observed for 1b and 2b, the pi-topological isomers of 1a and 2a, showing the role of pi-topology in the spin alignment of the excited states. Since a weak antiferromagnetic exchange interaction was observed in the ground state of 2a, the clear detection of the excited quintet high-spin state shows that the effective exchange coupling between the two dangling radicals through the diphenylanthracene spin coupler has been changed from antiferromagnetic to ferromagnetic upon photoexcitation. Thus, a photoinduced spin alignment utilizing the excited triplet molecular field was realized for the first time in the purely organic pi-conjugated spin system. Furthermore, the mechanism for the generation of dynamic electron spin polarization was investigated for the observed quartet and quintet states, and a plausible mechanism of the enhanced selective intersystem crossing was proposed. Ab initio molecular orbital calculations based on density functional theory were carried out to determine the electronic structures of the excited high-spin states and to understand the mechanism of the spin alignment utilizing the excited molecular field. The role of the spin delocalization and the spin polarization mechanisms were revealed on the photoexcited state.  相似文献   

13.
The electronic structure and transport properties of the Cp(2)BzM(2) (M = Sc, Ti, and V) tripledeckers are studied by spin polarized density functional theory and nonequilibrium Green's function method considering high-spin and low-spin states. Total energy calculations show that the sandwich structured Cp(2)BzSc(2) exists in a singlet state with no local magnetic moment on the Sc atoms. Cp(2)BzTi(2) in triplet state exists as a distorted tripledecker and is more stable than singlet and quintet states. Cp(2)BzV(2) stabilizes in the quintet state with a spin density of 2.4 on each vanadium atom. Hund's coupling plays a vital role in stabilizing the higher multiplets in case of titanium and vanadium clusters. In bigger clusters like Cp(3)Bz(2)M(4), Sc multidecker has one unpaired spin, Ti multidecker has five unpaired spins, and V multidecker has seven unpaired spins in total. Spin polarized electronic transport is found for all states of vanadium tripledecker and one state of the titanium tripledecker when connected to a gold two probe junction. Moderate to high-spin filter efficiencies are calculated for these states. Cp(2)BzSc(2) shows spin-independent electronic transport for all electronic states when introduced in the gold two probe junction. Current versus voltage curves are reported for selected clusters in the two probe setup.  相似文献   

14.
A series of ferrous complexes with the pentadentate ligand 2,6-(bis-(bis-2-pyridyl)methoxymethane)pyridine (PY5) was prepared and examined. PY5 binds ferrous iron in a square-pyramidal geometry, leaving a single coordination site accessible for complexation of a wide range of monodentate exogenous ligands: [Fe(II)(PY5)(X)](n+), X = MeOH, H(2)O, MeCN, pyridine, Cl-, OBz-, N(3)-, MeO-, PhO-, and CN-. The spin-states of these ferrous complexes are extremely sensitive to the nature of the single exogenous ligand; the spectroscopic and structural properties correlate with their high-spin (hs) or low-spin (ls) electronic ground state. Systematic metrical trends within six crystallographic structures clearly indicate a preferred conformational binding mode of the PY5 ligand. The relative binding affinities of the exogenous ligands in MeOH indicate that exogenous ligand charge is the primary determinant of the binding affinity; the [Fe(II)(PY5)](2+) unit preferentially binds anionic ligands over neutral ligands. At parity of charge, strong-field ligands are preferentially bound over weak-field ligands. In MeOH, the pK(a) of the exogenously ligated MeOH in [Fe(PY5)(MeOH)](2+) (9.1) limits the scope of exogenous ligands, as strongly basic ligands preferentially deprotonate [Fe(PY5)(MeOH)](2+) to yield [Fe(PY5)(OMe)](1+) rather than ligate to the ferrous center. Exogenous ligation by a strongly basic ligand, however, can be achieved in polar aprotic solvents.  相似文献   

15.
The electronic structure of a family of bis(imino)pyridine iron dihalide, monohalide, and neutral ligand compounds has been investigated by spectroscopic and computational methods. The metrical parameters combined with M?ssbauer spectroscopic and magnetic data for ((i)PrPDI)FeCl(2) ((i)PrPDI = 2,6-(2,6-(i)Pr(2)C(6)H(3)N=CMe)(2)C(5)H(3)N) established a high-spin ferrous center ligated by a neutral bis(imino)pyridine ligand. Comparing these data to those for the single electron reduction product, ((i)PrPDI)FeCl, again demonstrated a high-spin ferrous ion, but in this case the S(Fe) = 2 metal center is antiferromagnetically coupled to a ligand-centered radical (S(L) = (1)/(2)), accounting for the experimentally observed S = (3)/(2) ground state. Continued reduction to ((i)PrPDI)FeL(n) (L = N(2), n = 1,2; CO, n = 2; 4-(N,N-dimethylamino)pyridine, n = 1) resulted in a doubly reduced bis(imino)pyridine diradical, preserving the ferrous ion. Both the computational and the experimental data for the N,N-(dimethylamino)pyridine compound demonstrate nearly isoenergetic singlet (S(L) = 0) and triplet (S(L) = 1) forms of the bis(imino)pyridine dianion. In both spin states, the iron is intermediate spin (S(Fe) = 1) ferrous. Experimentally, the compound has a spin singlet ground state (S = 0) due to antiferromagnetic coupling of iron and the ligand triplet state. Mixing of the singlet diradical excited state with the triplet ground state of the ligand via spin-orbit coupling results in temperature-independent paramagnetism and accounts for the large dispersion in (1)H NMR chemical shifts observed for the in-plane protons on the chelate. Overall, these studies establish that reduction of ((i)PrPDI)FeCl(2) with alkali metal or borohydride reagents results in sequential electron transfers to the conjugated pi-system of the ligand rather than to the metal center.  相似文献   

16.
Select ferrous spin-transition complexes with the pentadentate ligand 2,6-bis(bis(2-pyridyl)methoxymethane)pyridine (PY5) were examined using variable-temperature solution solid-state magnetic susceptibility, crystallography, X-ray absorption spectroscopy (XAS), and UV/vis absorption spectroscopy. Altering the single exogeneous ligand, X, of [Fe(PY5)(X)]n)+ is sufficient to change the spin-state of the complexes. When X is the weak-field ligand Cl-, the resultant Fe complex is high-spin from 4 to 300 K, whereas the stronger-field ligand MeCN generates a low-spin complex over this temperature range. With intermediate-strength exogenous ligands (X = N3-, MeOH), the complexes undergo a spin-transition. [Fe(PY5)(N3)]+, as a crystalline solid, transitions gradually from a high-spin to a low-spin complex as the temperature is decreased, as evidenced by X-ray crystallography and solid-state magnetic susceptibility measurements. The spin-transition is also evident from changes in the pre-edge and EXAFS regions of the XAS Fe K-edge spectra on a ground crystalline sample. The spin-transition observed with [Fe(PY5)(MeOH)]2+ appears abrupt by solid-state magnetic susceptibility measurements, but gradual by XAS analysis, differences attributed to sample preparation. This research highlights the strengths of XAS in determining the electronic and geometric structure of such spin-transition complexes and underscores the importance of identical sample preparation in the investigation of these physical properties.  相似文献   

17.
We present here the first density functional theoretic study into the mechanism of cysteine dioxygenation by a model of cysteine dioxygenase enzymes. A large active site model containing the ligands bound to iron plus amino acid residues that are involved in hydrogen bonding interactions with the substrate is used. The reaction takes place via multi-state reactivity patterns on competing singlet, triplet, and quintet spin states, whereby the latter is the ground state in most complexes. Several new intermediates have been predicted, which have not been anticipated before. The dioxygen-bound complex is in a singlet spin ground state, and a state crossing to the quintet spin state leads to an FeOOS ring structure that splits into a cysteinyloxide radical that reorients and abstracts an electron from the iron center. In the final step, the oxoiron donates the oxygen atom to the substrate to produce cysteine sulfinic acid in a highly exothermic process. The rate-determining step is the initial step in the reaction mechanism on the quintet spin state surface.  相似文献   

18.
Non-heme iron(III) complexes of 14-membered tetraaza macrocycles have previously been found to catalytically decompose hydrogen peroxide to water and molecular oxygen, like the native enzyme catalase. Here the mechanism of this reaction is theoretically investigated by DFT calculations at the (U)B3LYP/6-31G* level, with focus on the reactivity of the possible spin states of the FeIII complexes. The computations suggest that H2O2 decomposition follows a homolytic route with intermediate formation of an iron(IV) oxo radical cation species (L.+FeIV==O) that resembles Compound I of natural iron porphyrin systems. Along the whole catalytic cycle, no significant energetic differences were found for the reaction proceeding on the doublet (S=1/2) or on the quartet (S=3/2) hypersurface, with the single exception of the rate-determining O--O bond cleavage of the first associated hydrogen peroxide molecule, for which reaction via the doublet state is preferred. The sextet (S=5/2) state of the FeIII complexes appears to be unreactive in catalase-like reactions.  相似文献   

19.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

20.
A series of iron(II) bis(triflate) complexes containing tripodal tetradentate nitrogen ligands with pyridine and dimethylamine donors of the type [N(CH(2)Pyr)(3-n)()(CH(2)CH(2)NMe(2))(n)] [n = 0 (tpa, 1), n = 1 (iso-bpmen, 3), n = 2 (Me(4)-benpa, 4), n = 3 (Me(6)-tren, 5)] and the linear tetradentate ligand [(CH(2)Pyr)MeN(CH(2)CH(2))NMe(CH(2)Pyr), (bpmen, 2)] has been prepared. The preferred coordination geometry of these complexes in the solid state and in CH(2)Cl(2) solution changes from six- to five-coordinate in the order from 1 to 5. In acetonitrile, the triflate ligands of all complexes are readily displaced by acetonitrile ligands. The complex [Fe(1)(CH(3)CN)(2)](2+) is essentially low spin at room temperature, whereas ligands with fewer pyridine donors increase the preference for high-spin Fe(II). Both the number of pyridine donors and the spin state of the metal center strongly affect the intensity of a characteristic MLCT band around 400 nm. The catalytic properties of the complexes for the oxidation of alkanes have been evaluated, using cyclohexane as the substrate. Complexes containing ligands 1-3 are more active and selective catalysts, possibly operating via a metal-based oxidation mechanism, whereas complexes containing ligands 4 and 5 give rise to Fenton-type chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号