首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure, based on DFT calculations, of a range of FeIV=O complexes with two tetra- (L1 and L2) and two isomeric pentadentate bispidine ligands (L3 and L4) is discussed with special emphasis on the relative stability of the two possible spin states (S = 1, triplet, intermediate-spin, and S = 2, quintet, high-spin; bispidines are very rigid diazaadamantane-derived 3,7-diazabicyclo[3.3.1]nonane ligands with two tertiary amine and two or three pyridine donors, leading to cis-octahedral [(X)(L)FeIV=O]2+ complexes, where X = NCCH3, OH2, OH-, and pyridine, and where X = pyridine is tethered to the bispidine backbone in L3, L4). The two main structural effects are a strong trans influence, exerted by the oxo group in both the triplet and the quintet spin states, and a Jahn-Teller-type distortion in the plane perpendicular to the oxo group in the quintet state. Due to the ligand architecture the two sites for substrate coordination in complexes with the tetradentate ligands L1 and L2 are electronically very different, and with the pentadentate ligands L3 and L4, a single isomer is enforced in each case. Because of the rigidity of the bispidine ligands and the orientation of the "Jahn-Teller axis", which is controlled by the sixth donor X, the Jahn-Teller-type distortion in the high-spin state of the two isomers is quite different. It is shown how this can be used as a design principle to tune the relative stability of the two spin states.  相似文献   

2.
The reaction of [FeII(tpa)(OTf)2] (tpa=tris(2-pyridylmethyl)amine) and its related 5-Me3-tpa complex with hydrogen peroxide affords spectroscopically distinct iron(III)-peroxo intermediates in CH3CN and acetone. The reaction in acetonitrile at -40 degrees C results in the formation of the previously reported Fe(III)-OOH intermediate, the end-on hydroperoxo coordination mode of which is established in this paper by detailed resonance Raman isotope-labeling experiments. On the other hand, the reaction in acetone below -40 degrees C leads to the observation of a different peroxo intermediate identified by resonance Raman spectroscopy to be an FeIII-OOC (CH3)2OH species; this represents the first example of an intermediate derived from the adduct of H2O2 and acetone. The peroxoacetone intermediate decays more rapidly than the corresponding FeIII-OOH species and converts to an FeIV=O species by O-O bond homolysis. This decay process is analogous to that observed for [FeIII(tpa)(OOtBu)]2+ and in fact exhibits a comparable enthalpy of activation of 54(3) kJ mol(-1). Thus, with respect to their physical properties at low temperature, the peroxoacetone intermediate resembles [FeIII(tpa)(OOtBu)]2+ more than the corresponding FeIII-OOH species. At room temperature, however, the behavior of the Fe(tpa)/H2O2 combination in acetone in catalytic hydrocarbon oxidations differs significantly from that of the Fe(tpa)/tBuOOH combination and more closely matches that of the Fe(tpa)/H2O2 combination in CH3CN. Like the latter, the Fe(tpa)/H2O2 combination in acetone catalyzes the hydroxylation of cis-1,2-dimethylcyclohexane to its tertiary alcohol with high stereoselectivity and carries out the epoxidation and cis-dihydroxylation of olefins. These results demonstrate the subtle complexity of the Fe(tpa)/H2O2 reaction surface.  相似文献   

3.
Density functional theory has been used to investigate the nature of the oxidizing agent in the Fenton reaction. Starting from the primary intermediate [FeII(H2O)5H2O2]2+, we show that the oxygen-oxygen bond breaking mechanism has a small activation energy and could therefore demonstrate the catalytic effect of the metal complex. The O-O bond cleavage of the coordinated H2O2, however, does not lead to a free hydroxyl radical. Instead, the leaving hydroxyl radical abstracts a hydrogen from an adjacent coordinated water leading to the formation of a second Fe-OH bond and of a water molecule. Along this reaction path the primary intermediate transforms into the [FeIV(H2O)4(OH)2]2+ complex and in a second step into a more stable high valent ferryl-oxo complex [FeIV(H2O)5O]2+. We show that the energy profile along the reaction path is strongly affected by the presence of an extra water molecule located near the iron complex. The alternative intermediate [FeII(H2O)4(OOH-)(H3O+)]2+ suggested in the literature has been also investigated, but it is found to be unstable against the primary intermediate. Our results support a picture in which an FeIV-oxo complex is the most likely candidate as the active intermediate in the Fenton reaction, as indeed first proposed by Bray and Gorin already in 1932.  相似文献   

4.
Previous studies have classified a series of nonheme iron catalysts for olefin cis-dihydroxylation by H2O2 into two groups. Complex 1, [(TPA)Fe(OTf)2], representative of Class A catalysts, forms a low-spin FeIII-OOH intermediate that gives rise to a high-valent FeV(=O)OH oxidant. The preference of this catalyst for electron-rich olefins demonstrates its electrophilic character. On the other hand, complex 2, [(6-Me3-TPA)Fe(OTf)2], representative of Class B catalysts, prefers instead to oxidize electron-deficient olefins, suggesting an oxidant with nucleophilic character. It is suggested that such a nucleophilic oxidant may be the high-spin FeIII-OOH intermediate derived from 2 or the FeIV(=O)(*OH) species derived therefrom.  相似文献   

5.
The stoichiometric formation of [FeIV(O)(TPA)(NCMe)]2+ (TPA = tris(2-pyridylmethyl)amine) from the reaction of [FeII(TPA)(NCMe)2]2+ with 1 equiv. peracetic acid exhibits more kinetic complexity than might be expected from the simple stoichiometry. A multiple-pathway mechanism with an FeIV-peracetic acid species, [(TPA)FeIV(O)((H)O3CR)]2+/+, as the primary oxidant is proposed.  相似文献   

6.
Experimental and DFT-based computational results on the aziridination mechanism and the catalytic activity of (bispidine)copper(I) and -copper(II) complexes are reported and discussed (bispidine=tetra- or pentadentate 3,7-diazabicyclo[3.1.1]nonane derivative with two or three aromatic N donors in addition to the two tertiary amines). There is a correlation between the redox potential of the copper(II/I) couple and the activity of the catalyst. The most active catalyst studied, which has the most positive redox potential among all (bispidine)copper(II) complexes, performs 180 turnovers in 30 min. A detailed hybrid density functional theory (DFT) study provides insight into the structure, spin state, and stability of reactive intermediates and transition states, the oxidation state of the copper center, and the denticity of the nitrene source. Among the possible pathways for the formation of the aziridine product, the stepwise formation of the two N-C bonds is shown to be preferred, which also follows from experimental results. Although the triplet state of the catalytically active copper nitrene is lowest in energy, the two possible spin states of the radical intermediate are practically degenerate, and there is a spin crossover at this stage because the triplet energy barrier to the singlet product is exceedingly high.  相似文献   

7.
Transition metal complexes with 2,4-substituted tetradentate, 2,3,4- and 2,4,7-substituted pentadentate, and 2,3,4,7-substituted hexadentate bispidine ligands (bispidine = 3,7-diazabicyclo[3.3.1]nonane) with two tertiary amine and two, three, or four pyridine donors are relatively stable (10 < log K(CuL) < 18). Interestingly, the two isomeric pentadentate ligands have very different stabilities with a variety of metal ions and, depending on the metal ion, one of the isomers leads to more stable complexes than the hexadentate and the other to less stable complexes than the tetradentate ligand. Another interesting observation is that the complex stabilities of all bispidine ligands reported here do not follow the Iriving-Williams series since the stability constants of the cobalt(II) complexes are up to 4 log units larger than those of the corresponding nickel(II) complexes. All these observations are analyzed on the basis of subtle distortions of the coordination geometries, and these have been related previously to Jahn-Teller-derived distortions for the copper(II) complexes. However, similar but less pronounced structural properties are observed with other metal centers, as shown, e.g., with the experimental structures of the two zinc(II) complexes with the isomeric pentadentate ligands reported here. The structural properties and the related stabilities are also discussed on the basis of force field calculations.  相似文献   

8.
Computational and experimental studies show that Fe(BPMEN)-catalyzed olefin oxidation has two (FeIII-OOH and FeV=O) oxidant species, which act with comparable activation barriers. The presence of water favors formation of an HO-FeV=O oxidant via water-assisted O-OH bond cleavage and leads to both epoxide and cis-diol products. In the absence of water, the oxidant is the FeIII-OOH [or (MeCN)FeIII-OOH], and oxidation mainly leads to epoxide. This conclusion differs from that derived from DFT investigations of iron-porphyrin-catalyzed olefin epoxidation, where the FeIII-OOH pathway is deemed too high in energy to be plausible. The difference between these two systems may lie in the more flexible coordination environment of the non-heme iron complex, which has an available adjacent coordination site that contributes to the activation of the peroxide in both wa and nwa pathways.  相似文献   

9.
We report in this study that an oxoiron(IV) porphyrin complex bearing electron-deficient porphyrin ligand, (TPFPP)FeIV=O (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion), shows reactivities similar to those found in oxoiron(IV) porphyrin pi-cation radicals. In the epoxidation of olefins by the (TPFPP)FeIV=O complex, epoxides were yielded as major products; cyclohexene oxide was the sole product formed in the epoxidation of cyclohexene, and stilbenes were stereospecifically oxidized to the corresponding epoxide products. More striking results were obtained in alkane hydroxylation reactions; the hydroxylation of adamantane afforded a high degree of selectivity for tertiary C-H bonds over secondary C-H bonds, and the hydroxylation of cis-1,2-dimethylcyclohexane yielded a tertiary alcohol product with >99% retention of stereochemistry. The latter result demonstrates that an oxoiron(IV) porphyrin complex hydroxylates alkanes with a high stereospecificity. Isotope labeling studies performed with H218O and 18O2 in the olefin epoxidation and alkane hydroxylation reactions demonstrated that oxygen atoms in oxygenated products derived from the oxoiron(IV) porphyrin complex.  相似文献   

10.
Non-heme iron(III) complexes of 14-membered tetraaza macrocycles have previously been found to catalytically decompose hydrogen peroxide to water and molecular oxygen, like the native enzyme catalase. Here the mechanism of this reaction is theoretically investigated by DFT calculations at the (U)B3LYP/6-31G* level, with focus on the reactivity of the possible spin states of the FeIII complexes. The computations suggest that H2O2 decomposition follows a homolytic route with intermediate formation of an iron(IV) oxo radical cation species (L.+FeIV==O) that resembles Compound I of natural iron porphyrin systems. Along the whole catalytic cycle, no significant energetic differences were found for the reaction proceeding on the doublet (S=1/2) or on the quartet (S=3/2) hypersurface, with the single exception of the rate-determining O--O bond cleavage of the first associated hydrogen peroxide molecule, for which reaction via the doublet state is preferred. The sextet (S=5/2) state of the FeIII complexes appears to be unreactive in catalase-like reactions.  相似文献   

11.
The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selectivity of hydrogen peroxide utilization to form cyclooctene epoxide. The catalytically active species are formed only in alcohol-containing solvents as a consequence of (F(20)TPP)FeCl dissociation into [(F20TPP)Fe(ROH)]+ cations and Cl- anions. The observed reaction kinetics are analyzed in terms of a proposed mechanism for the epoxidation of the olefin and the decomposition of H2O2. The first step in this scheme is the reversible coordination of H2O2 to [(F20TPP)Fe(ROH)]+. The O-O bond of the coordinated H2O2 then undergoes either homolytic or heterolytic cleavage. The rate of homolytic cleavage is found to be independent of alcohol composition, whereas the rate of heterolytic cleavage increases with alcohol acidity. Heterolytic cleavage is envisioned to form iron(IV) pi-radical cations, whereas homolytic cleavage forms iron(IV) hydroxo cations. The iron(IV) radical cations are active for olefin epoxidation, whereas the iron(IV) cations catalyze the decomposition of H2O2. Reaction of iron(IV) pi-radical cations with H2O2 to form iron(IV) hydroxo cations is also included in the mechanism, a process that is favored by alcohols with a high charge density on the O atoms. The proposed mechanism describes successfully the effects of H2O2, cyclooctene, and porphyrin concentrations, as well as the effects of alcohol concentration.  相似文献   

12.
Low-temperature stopped-flow electronic spectroscopy was utilized to resolve the intermediates formed in the reaction of a diiron(II) compound, Fe2(H2Hbamb)2(N-MeIm)2 (H4HBamb = 2,3-bis(2-hydroxybenzamido)dimethylbutane), 1, with the oxygen atom donors 2,6-dimethyliodosylbenzene and p-cyanodimethylaniline N-oxide and the mechanistic probe hydroperoxide 2-methyl-1-phenylprop-2-yl hydroperoxide (MPPH). Previous studies showed that 1 is capable of catalytically oxidizing cyclohexane to cyclohexanol (300 turnovers) via a pathway involving the heterolytic cleavage of the O-O bond of MPPH (>98% peroxide utilization). We now report intimate details of the formation of the reactive intermediate and its subsequent decay in the absence of substrates. The reaction, which is independent of the nature of the oxidant, proceeds in three consecutive steps assigned as (i) oxygen-atom transfer to one of the iron centers of 1 to form an FeIV=O species, 2, (ii) ligand rearrangement to 3, and (iii) internal collapse of the terminal oxo group to generate a diferric, mu-oxo species, 4. Assignment of the second step as a ligand rearrangement was corroborated by stopped-flow spectroscopic studies of the one-electron oxidation of the starting diferrous 1, which is also known to undergo ligand rearrangement upon the formation of the [FeII, FeIII] mixed-valent complex. Observation of the reaction rates over a temperature range allowed for the determination of activation parameters for each of the three steps. The role of the ligand reorganization in the energetic profile for the formation of the catalytically competent intermediate is discussed, along with the potential biological significance of the internal conversion of the active oxidant to the inert, mu-oxo diiron(III) dimer, 4.  相似文献   

13.
In the competitive peroxidation of mixtures of two alkenes with Co(II)/O(2)/Et(3)SiH, it was found that the relative reactivities of the alkene substrates are influenced by three major factors:. (1) relative stability of the intermediate carbon-centered radical formed by the reaction of the alkene with HCo(III) complex, (2) steric effects around the C=C double bond, and (3) electronic factors associated with the C=C double bond. Consistent with results from simple alkenes, the chemo- and regioselective peroxidation of dienes was also realized. Depending on the diene structure, the product included not only the expected acyclic unsaturated triethylsilyl peroxides but also 1,2-dioxolane and 1,2-dioxane derivatives via intramolecular cyclization of the unsaturated peroxy radical intermediates.  相似文献   

14.
The synthesis of a series of tetra‐ and pentadentate bispidine‐type ligands (bispidine=3,7‐diazabicyclo[3.3.1]nonane) – tetradentate ligands are donor‐substituted at C(2) and C(4), pentadentate ligands have an additional donor at N(3) or N(7), with pyridine, 2‐methylpyridine, or quinoline donor moieties – and of their CuII complexes are reported, together with single‐crystal structural analyses and solution studies (electrochemistry, electronic and EPR spectroscopy). Depending on the ligand geometry and on the co‐ligands (solvent or counter anion), there are various structural forms (pseudo‐Jahn–Teller elongation along all three molecular axes), and the structural data are correlated with the spectroscopic and electrochemical parameters.  相似文献   

15.
Three dinuclear (nitrosyl)iron complexes containing three 1,2-di(phenyl)ethylene-1,2-dithiolate ligands have been prepared ([Fe2(NO)2(S2C2R2)3]0 (R = phenyl, 1a; p-tolyl, 2a; (4-tert-butyl)phenyl, 3a)). Each of these compounds represents the first member of a three-membered electron-transfer series: [Fe2(NO)2(S2C2R2)3]z (z = 0, -1, , -2). The salt [Co(Cp)2][Fe2(NO)2(L3)3] has also been isolated. The molecular structures of 2a and 3a have been determined by X-ray crystallography. Both neutral complexes contain two nearly linear FeNO units, one of which is S,S'-coordinated to two dithiolene ligands yielding a square-based pyramidal Fe(NO)S4 polyhedron; the second FeNO moiety forms two (micro2-S)-bridges to the first unit and is S,S'-coordinated to a third dithiolate radical yielding also a square-based pyramidal Fe(NO)S4 polyhedron. The electronic structures of the neutral, monoanionic, and dianionic species have been elucidated spectroscopically (UV-vis, IR, EPR, M?ssbauer): [[FeII(NO+)](L*)[FeII(NO)](L)2]0 (S = 0); [[FeII(NO)](L*)[FeII(NO)](L)2]1- (S = 1/2); and [[FeII(NO)](L)[FeII(NO)](L)2]2- (S = 0), where (L)2- represents the corresponding closed-shell dithiolate dianion and (L*)- is its monoanionic radical.  相似文献   

16.
A series of transition metal substituted polyfluorooxometalates (PFOM) [M(L)H2F6NaW17)55]q-, M= Zn2+ , Co2+, Mn2+, Fc2+, Ru2+, Ni2+ and V5+ and L=H2O, O2-, of quasi-Wells-Dawson structure, was synthesized. In the series prepared, only the nickel-substituted polyfluorooxometalate was capable of catalytic activation of hydrogen peroxide in biphasic reaction media, the reaction leading mainly to the selective epoxidation of alkenes and alkenols. The manganese-, cobalt-, ruthenium-, iron-, vanadium-, and zinc-substituted polyfluorooxometalates were catalytically inactive, although, except for the zinc polyfluorooxometalate, very significant catalase activity was observed. Oxidation of thianthrene showed that sulfoxides were oxidized more easily than sulfides. Kinetic profiles of cyclooctene epoxidation showed that the reaction was zero order in both cyclooctene and hydrogen peroxide. Hydrogen peroxide was consumed at a rate 40% higher than the rate of epoxidation of cyclooctene. The reaction appears to proceed through an intermediate peroxo/hydroperoxo species that was observed in the IR spectrum. Atomic absorption, IR and 19F NMR spectroscopy indicated that the [Ni(H2O)H2F6NaW17O55]9- compound was stable under reaction conditions.  相似文献   

17.
Iron-bispidine complexes are efficient catalysts for the oxidation of thioanisole to phenylmethylsulfoxide with iodosylbenzene as oxidant. With the tetradentate bispidine ligand L(1) (L(1) = 2,4-pyridyl-3,7-diazabicyclo[3.3.1]nonane)) the catalytic efficiency is smaller than with the pentadentate bispidine ligand L(2) (L(2) = 2,4-pyridyl-7-(pyridine-2-ylmethyl)-3,7-diazabicyclo[3.3.1]nonane)). Based on the redox potentials (iron complexes with L(1) are stronger oxidants than with L(2)) and known efficiencies in catalytic olefin oxidation and C-H activation reactions, the expectations were different. A DFT-based analysis is used to explain the apparent contradiction, and this is based on differences in the electronic ground states of the ferryl complexes as well as in the oxygen transfer transition states.  相似文献   

18.
Contrasted here are the competitive 18O/16O kinetic isotope effects (18O KIEs) on kcat/Km(O2) for three non-heme iron enzymes that activate O2 at an iron center coordinated by a 2-His-1-carboxylate facial triad: taurine dioxygenase (TauD), (S)-(2)-hydroxypropylphosphonic acid epoxidase (HppE), and 1-aminocyclopropyl-1-carboxylic acid oxidase (ACCO). Measured 18O KIEs of 1.0102 +/- 0.0002 (TauD), 1.0120 +/- 0.0002 (HppE), and 1.0215 +/- 0.0005 (ACCO) suggest the formation in the rate-limiting step of O2 activation of an FeIII-peroxohemiketal, FeIII-OOH, and FeIV O species, respectively. The comparison of the measured 18O KIEs with calculated or experimental 18O equilibrium isotope effects (18O EIEs) provides new insights into the O2 activation through an inner-sphere mechanism at a non-heme iron center.  相似文献   

19.
The first syntheses of four stereoisomeric diaminocyclooctane diols, as well as a chlorocyclooctane aminodiol, are reported. In the first part, photooxygenation of cis,cis-1,3-cyclooctadiene gave a bicyclic endoperoxide, which was reduced with zinc followed by mesylation of the hydroxyl groups. Treatment with sodium azide afforded 1,4- and 1,2-cyclooctene diazides. Oxidation of the double bonds in the isomeric diazides with OsO4, followed by hydrogenation of the azide groups, led to 3,8-diaminocyclooctane-1,2-diol and 3,4-diaminocyclooctane-1,2-diols. In the second part, cis-3,8-diazidocyclooctene was converted into the corresponding epoxide. Stereospecific hydrolysis of the epoxide ring with HCl(g) in methanol, and hydrogenation of the azide groups gave 3,8-diamino-2-chloro-cyclooctan-1-ol. Bromination of the double bond in cyclooctene diacetate, followed by acetate deprotection, azidolysis of the bromides, and hydrogenation of the azide groups resulted in the formation of 2,3-diaminocyclooctane-1,4-diol.  相似文献   

20.
An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and M?ssbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); M?ssbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(?) = 53 kJ/mol, ΔS(?) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号