首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calix[4]arene 3, which contains two distal triazole groups on the lower rim and two distal o-methoxyphenylazo groups on the upper rim, was synthesized and found to be a specific and ratiometric sensor for Hg2+ in a polar protic solvent. A series of o-methoxyphenylazo derivatives (3, 4, 5, 7, and 9) were synthesized, which proved that the lower-rim triazoles and the hydroxyl azophenol(s) were the major ligands for metal ion binding. Though analogues 4 and 10 showed some sensitivity for Hg2+, compound 3 was the only ratiometric chemosensor for Hg2+ among the series of azocalix[4]arenes synthesized in this work. The formation of 3·Hg2+ complex was supported by UV/vis and NMR titration studies and Mass spectrometry. Based on the symmetrical features of NMR spectra of 3·Hg2+, the complex is believed to be symmetrical with respect to the calix[4]arene cavity. Furthermore, the complex was determined to be 1:1 binding stoichiometry by Job’s plot, and the association constant was determined to be 4.02×103 M−1 using Benesi-Hildebrand plot.  相似文献   

2.
The binding affinity for Pb2+, Cd2+ and Hg2+ of the sinapic acid–calix[4]arene hybrid 2, having four sinapyl pendants at the upper rim, has been investigated via an UV–Vis study. Compound 2 has better complexing ability than the monomeric p-phenetidine derivative 1. This highlights that the clustering of sinapyl units in a basket-like structure, dictated by the calixarene scaffold, greatly enhances the complexing properties. Ligand 2 forms complexes even with Hg2+, which is not complexed by 1 at all; the complexes formed by 2 with Pb2+ and Cd2+ are much stronger than the analogous complexes formed by 1. The UV–Vis investigation shows that the hybrid 2 markedly favors Pb2+ over Cd2+ and Hg2+. Information on the structural properties of the complex species was obtained by 1H NMR spectroscopy. NMR data show that all three metal ions are placed into the cavity consisting of the calixarene scaffold and the sinapyl pendants, though their binding affects the coordinating regions to a different extent.  相似文献   

3.
A simple Hg2+-selective chemodosimetric system based on thiosemicarbazone was investigated. The transformation of thiosemicarbazone into semicarbazone selectively exerted by Hg2+ ions and the dimerization of semicarbazone resulted in a pronounced OFF–ON-type fluorescent signaling behavior. The coexistent metal ions, such as Fe3+, Ca2+, Cu2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+, Mg2+, Na+, K+, and Fe2+, had no obvious interference with the detection of Hg2+. In addition, S12–Hg2+ plays a high sensitivity for basic anions to form an ‘OFF–ON–OFF’ type signaling behavior, with the Hg2+-induced emission spectra can be quenched. Moreover, test strips based on S12 exhibited a good selectivity to Hg2+. We believe the test strips could act as a convenient and efficient Hg2+ test kit.  相似文献   

4.
A novel calix[4]arene derivative with two ferrocenyl Schiff-base groups at the upper rim 3 has been synthesized from 5,17-diformyl-25,27-dipropoxy-26,28-dihydroxy calix[4]arene and 4-ferrocenylaniline via condensation reaction. Reduction of 3 with sodium borohydride led to calix[4]arene derivative 4 with two amino ferrocenyl groups at the upper rim. The ferrocenyl Schiff-base calix[4]arene and its corresponding reduced amine have been purified and characterized by elemental analysis,1H NMR, FTIR, Mass and UV-vis spectral data. Electrochemical properties of compounds 3 and 4 have been investigated. Cyclic voltammograms of 3 and 4 show reversible redox couples of ferrocene/ferrocinium at E1/2=0.401 V and 0.346 V, respectively. Electrochemical studies show these redox active compounds electrochemically recognize trivalent lanthanides La3+ and Ce3+ and divalent Pb2+ and Cu2+cations. With ferrocenyl Schiff-base calix[4]arene 3 an anodic shift as large as 130 mV is observed on addition of one equivalent of Ce3+ ion. Also extraction properties of compound 4 towards some metal cations have been described. It has been observed that compound 4 has a good selectivity for metal cations Fe3+, Cu2+, Pb2+ and Cd2+ against Ni2+ and Co2+.  相似文献   

5.
A simple fluorescent probe, which contains rhodamine and aminoquinoline moieties, was designed and prepared for selective detection of Hg2+ in acetonitrile. RbQ exhibited high selectivity and sensitivity toward Hg2+ over other common metal ions. The recognition of RbQ toward Hg2+ can be detected by fluorescence spectra, absorption spectra, and even by naked eyes. The binding ratio of the RbQ–Hg2+ complex was found to be 1:1 according to Job plot experiment, and the limit of detection was 1.05×10−7 M. Moreover, the prepared complex RbQ–Zn2+ (RbQZ) could detect Hg2+ in a ratiometric way and showed lower limit of detection (2.95×10−8 M) than RbQ in the same condition. Finally, we also demonstrated that the aminoquinoline–zinc complex could be served as a new and effective FRET donor for rhodamine derivatives.  相似文献   

6.
New fluorescent chemosensors 1,3-alternate-1 and 2 with pyrenyl-appended triazole-based on thiacalix[4]arene were synthesized. The fluorescence spectra changes suggested that chemosensors 1 and 2 are highly selective for Ag+ over other metal ions by enhancing the monomer emission of pyrene in neutral solution. However, other heavy metal ions, such as Cu2+, and Hg2+ quench both the monomer and excimer emission of pyrene acutely. The 1H NMR results indicated that Ag+ can be selectively recognized by the triazole moieties on the receptors 1 and 2 together with the ionophoricity cavity formed by the two inverted benzene rings and sulfur atoms of the thiacalix[4]arene.  相似文献   

7.
Novel mesoporous silica-immobilized rhodamine (MSIR) and silica particle-immobilized rhodamine (SPIR) anchored by a tren (N(CH2CH2NH2)3) were synthesized. The binding and adsorption abilities of both MSIR and SPIR for metal cations were investigated with fluorophotometry and ion chromatography, respectively. Both MSIR and SPIR show selectivity for Hg2+ ion over other metal cations because the Hg2+ ion selectively induces a ring opening of the rhodamine fluorophores. The sensitivity of the MSIR for Hg2+ ion is greater than that of the SPIR and the MSIR adsorbs 70% of Hg2+ ion while the SPIR does only 40%. The MSIR can be also easily recovered by treatment of a solution of TBA+OH. For the application of Hg2+ detection in the environmental field, the MSIR-coated glass plate is also developed and exhibits an excellent function in visual and fluorescence changes with Hg2+ ion.  相似文献   

8.
The semirigid tridentate 8-(2-pyridinylmethylthio)quinoline ligand (Q1) is shown to form the structurally characterized transition metal complexes [Cu(Q1)Cl2] (1), [Co(Q1)(NO3)2] (2), [Cd(Q1)(NO3)2] (3), [Cd(Q1)I2] (4). [Cu(Q1)2](BF4)2·(H2O)2 (5), [Cu(Q1)2](ClO4)2·(CH3COCH3)2 (6), [Zn(Q1)2](ClO4)2(H2O)2 (7), [Cd2(Q1)2Br4] (8), [Ag2(Q1)2(ClO4)2] (9), and [Ag2(Q1)2(NO3)2] (10). Four types of structures have been observed: ML-type in complexes 14, in which the anions Cl, NO3 or I also participate in the coordination; ML2 type in complexes 57 without direct coordination of the anions BF4 or ClO4 and with more (Cu2+) or less (Zn2+) distorted bis-fac coordinated Q1; M2L2-type in complex 8, in which two Br ions act as bridges between two metal ions; and M2(μ-L)2-type in complexes 9 and 10, in which the ligand bridges two anion binding and Ag–Ag bonded ions. Depending on electron configuration and size, different coordination patterns are observed with the bonds from the metal ions to Npyridyl longer or shorter than those to Nquinoline. Typically Q1 acts as a facially coordinating tridentate chelate ligand except for the compounds 9 and 10 with low-coordinate silver(I). Except for 6 and 8, the complexes exhibit distinct constraining effects against both G(+) and G(-) bacteria. Complexes 1, 3, 4, 5, 7 have considerable antifungal activities and complexes 1, 5, 7, and 10 show selective effects to restrain certain botanic bacteria. Electrochemical studies show quasi-reversible reduction behavior for the copper(II) complexes 1, 5 and 6.  相似文献   

9.
A series of benzyloxybenzaldehyde derivatives (1-4) were synthesized by the reactions of 4-(bromomethyl)benzonitrile with 4-hydroxy-3-methoxybenzaldehyde (vanillin), 2-hydroxy-3-methoxybenzaldehyde (o-vanillin), 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde. Condensation reactions among the new benzyloxybenzaldehyde derivatives (1-4) with 4′-aminobenzo-15-crown-5 yielded the new Schiff base compounds (5-8). Sodium complexes (5a-8a) and potassium complexes (5b-8b) were prepared with NaClO4 and KI, respectively. All of these synthesized compounds were characterized on the basis of FT-IR, 1H and 13C NMR, mass spectrometry and elemental analyses data. The solid state structures of compounds 8 and 5a were determined by X-ray crystallography. The extraction abilities of compounds 5-8 were also evaluated in CH2Cl2 by using several main group and transition metal picrates, such as Na+, K+, Pb2+, Cr3+, Ni2+, Cu2+ and Zn2+.  相似文献   

10.
A simple (R)-(−)-2-phenylglycinol functionalized Schiff base L1 and its characterization as a fluorescent–colorimetric sensor for Hg2+ ion are described. The UV–vis and fluorescence analysis in methanol and aqueous solution show complex formation between L1 and Hg2+ ion with a micromolar association constant. Competition experiments performed for the acetate salts of Hg2+, Zn2+, Co2+, Pb2+, Cd2+, Mn2+, Cu2+, Ni2+, and Ba2+ revealed that compound L1 exhibits high selectivity toward Hg2+ displaying a color change easily detectable by naked-eye and a turn-off fluorescent effect due to a chelation-enhanced quenching (CHEQ) mechanism. Moreover, addition of EDTA to L1–Hg2+ recovers the fluorescence and color offering receptor L1 as a reversible sensor for real-time applications.  相似文献   

11.
A new colorimetric and fluorogenic probe (RN3) based on rhodamine-B has been successfully designed and synthesized. It displays a selective response to Hg2+ in the aqueous buffer solution over the other competing metals. Upon addition of Hg2+, the solution of RN3 exhibits a ‘naked eye’ observable color change from colorless to red and an intensive fluorescence with about 105-fold enhancement. The changes in the color and fluorescence are ascribed to the ring-opening of spirolactam in rhodamine fluorophore, which is induced by a binding of the constructed receptor to Hg2+ with the association and dissociation constants of 0.22 × 105 M−1 and 25.2 μM, respectively. The Job's plot experiment determines a 1:1 binding stoichiometry between RN3 and Hg2+. The resultant “turn-on” fluorescence in buffer solution, allows the application of a method to determine Hg2+ levels in the range of 4.0–15.0 μM, with the limit of detection (LOD) calculated at 60.7 nM (3σ/slope). In addition, the fluorescence ‘turn-off’ and color ‘fading-out’ happen to the mixture of RN3-Hg2+ by further addition of I or S2−. The reversible switching cycles of fluorescence intensity upon alternate additions of Hg2+ and S2− demonstrate that RN3 can perform as an INHIBIT logic gate. Furthermore, the potential of RN3 as a fluorescent probe has been demonstrated for cellular imaging.  相似文献   

12.
The reaction of P4S10 (1) with N,N′-diphenylurea (PhNH)2CO (2) results in new heterocyclic compounds: the pyridinium salt of 1,3-diphenyl-2-sulfido-2-thioxo-1,3-diaza-2λ5-phosphetidine (3) (with a P–N–C–N cycle) and the pyridinium salt of 1,4-diphenyl-2,5-disulfido-2,5-dithioxo-1,4-dithiadiaza-2λ5,5λ5-diphosphinane (4), containing the (P–S–N)2 cycle and the cyclic thiophosphates [pyH]2[P2S8] (5), [pyH]2[P2S7] (6) and [pyH]3[P3S9] (7). A similar reaction, but carried out with N,N′-diphenylthiourea (PhNH)2CS (8), leads to the formation of 4 and 6. pyPS2Cl (9), used as an alternative starting material, also yields compounds 3, 4, 5, and further [pyH][PS2Cl2] (10) and S8 after reaction with 2. Compound 3 reacts with Pd(CH3COO)2, with the formation of the complex [Pd(Ph2N2COPS2)2] (11). The crystal structures of 3 and 7 were determined by single-crystal X-ray diffraction.  相似文献   

13.
The reactions of bis-(3,5-di-tert-butyl-2-phenol)oxamide (1) with Cl2SiR2 (Me or Ph) or Cl2GeR2 (Me, nBu or Ph) in THF provided binuclear pentacoordinated silicon and germanium compounds: bis-(3,5-di-tert-butyl-2-oxo-phenyl)-oxamido-bis-dimethylsilane (2), bis-(3,5-di-tert-butyl-2-oxo-phenyl)-oxamido-bis-diphenylsilane (3), bis-(3,5-di-tert-butyl-2-oxo-phenyl)-oxamido-bis-dimethylgermane (4), bis-(3,5-di-tert-butyl-2-oxo-phenyl)-oxamido-bis-di-n-butylgermane (5) and bis-(3,5-di-tert-butyl-2-oxo-phenyl)-oxamido-bis-diphenylgermane (6). The mono-nuclear tetracoordinated silicon compounds N-acetyl-bis-(3,5-di-tert-butyl-2-oxo-phenyl)-amide-bis-(dimethylsilane) (8) and N-acetyl-bis-(3,5-di-tert-butyl-2-oxo-phenyl)-amide-bis-(diphenylsilane) (9) were synthesized from N-(3,5-di-tert-butyl-2-phenol)acetamide (7) and Cl2SiR2 (R = Me and Ph). Comparison of the 29Si NMR chemical shifts of the penta- (2 and 3) and tetracoordinated (8 and 9) silicon compounds provided information about the intramolecular coordination of the carbonyl group to the silicon atom. Compounds 3 and 6 were characterized by single-crystal X-ray analyses. They have planar hexacyclic structures where the central atoms present distorted tbp geometries with one nitrogen and two carbon atoms in equatorial positions and two oxygen atoms in apical positions.  相似文献   

14.
A new indole-based fluorescent chemosensor 1 was prepared and its metal ion sensing properties were investigated. It exhibits high sensitivity and selectivity toward Hg2+ among a series of metal ions in H2O-EtOH (7:1, v/v). The association constant of the 1:1 complex formation for 1-Hg2+ was calculated to be 9.57 × 103 M−1, and the detection limit for Hg2+ was found to be 2.25 × 10−5 M. Computational results revealed that 1 and Hg2+ ion formed with a central tetrahedron-coordinated Hg2+.  相似文献   

15.
A series of new calix[4]arene(amido)mono-crown compounds have been synthesized through aminolysis of calix[4]arene esters and intramolecular cyclization of the intermediates. The title compounds were converted into their nitro and azo substituted derivatives to provide novel photoresponsive molecular receptors for transition metal ions. Single crystal X-ray analysis of calix[4]arene(ethyleneamido)mono-crown (2a) revealed that the compound is present in a cone conformation with an amido loop that caps the lower rim of calix[4]arene cavity to result in stacking along axis a and axis c to provide supramolecular aggregates in the solid state. Evaluation of synthesized macrocycles in the solution phase for recognition of transition metal cations (Cr3+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Cd2+, Pb2+, Hg+, Hg2+, Pd2+, and Pt2+) by UV-visible spectroscopy revealed that p-tert-butyl-calix[4]arene mono-(amidocrown) 1c selectively shows a blue shift at 38 nm on interaction with Hg+ ions.  相似文献   

16.
Biscalix[4]arenes, 7 and 8, have been synthesized by a one-pot coupling method and a stepwise approach, respectively. One-pot reaction in a pressurized vessel resulted in the symmetric biscalix[4]arene 7 in high yield. Oxidation of compounds 7 and 8 by Tl(CO2CF3)3 in CF3COOH yielded biscalix[4]quinones, 9 and 10, respectively. Preliminary electrochemical studies by cyclic voltammetry of 9 and 10 show significant changes of their voltammograms upon addition of Na+.  相似文献   

17.
Reactions of potassium 4-thioxo-3-thia-1,4a,9-triaza-fluorene-2-thiolate with Ph3PbCl, Ph3SnCl and Ph3GeCl provided the corresponding metal pentacoordinated compounds 2-4. Addition of THF afforded their hexacoordinated derivatives (5-7). Adducts of 2 and 3 with DMSO (8, 10), pyridine (9, 11), Ph3PO (12, 14) CH3OH (13, 15), respectively were synthesized. Compound 2 afforded the H2O adduct (16). In all cases the metal atom is chelated by the ligand through a covalent bond with S2 and a coordination bond with N1 forming four membered rings. Compounds were identified by 1H, 13C, 15N, 119Sn and 207Pb. X-ray diffraction structures of 2, 3, 8, 9, 11, 14 and 16 were obtained.  相似文献   

18.
A heterocyclic hydrazone ligand, pyridine-2-carboxaldehyde-2-pyridylhydrazone, HL, 1, was investigated as a new chromogenic agent for selective detection of Pd2+. The ligand HL, 1, undergoes 1:1 complexation with Pd2+ and Cu2+ to form complexes [Pd(L)Cl], 1a and [Cu(HL)Cl2], 1b respectively. The complex 1a gives a characteristic absorption peak at 536 nm with distinct reddish-pink coloration. The change in color can easily be distinguished from other metal complexes by the naked eye. No obvious interference was observed in the presence of other metal ions (Na+, K+, Mg2+, Ca2+, Al3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Sn2+, Hg2+, Pb2+). The association constants, Kass (UV–Vis), were found to be 5.52 ± 0.004 × 104 for 1a and 4.94 ± 0.006 × 104 for 1b at 298 K. On excitation at 295 nm, the ligand HL, 1 strongly emits at 372 nm due to an intraligand 1(π–π) transition. Upon complexation the emission peaks are blue shifted (λex 295 nm, λem 358 nm for 1a and λex 295 nm, λem 367 nm for 1b) along with a quenching (F/F0 0.32 for 1a and 0.88 for 1b) in the emission intensity. DFT and TDDFT calculations were highly consistent with the spectroscopic behavior of the ligand and complexes. The molecular structure of the complex 1b has been determined by single crystal X-ray diffraction studies.  相似文献   

19.
Six organotin compounds with 4,4′-thiodibenzenethiol (LH2) of the type RnSnL4−nSnRn (n = 3: R = Me 1, Ph 2, PhCH23, n = 2: R = Me 4, Ph 5, PhCH26) have been synthesized. All compounds were characterized by elemental analysis, IR and NMR (1H, 13C, and 119Sn) spectra. The structures of compounds 1, 2, 4, 5 and 6 were also determined by X-ray diffraction analysis, which revealed that compounds 1 and 2 were monomeric structures, compounds 4, 5 and 6 were centrosymmetric dinuclear macrocyclic structures, and all the tin(IV) atoms are four-coordinated. Furthermore, supramolecular structures were also found in compounds 1, 2, 4, 5 and 6, which exhibit one-dimensional chains, two-dimensional networks or three-dimensional structures through intermolecular C–H?S weak hydrogen bonds (WHBs), non-bonded Sn?S interactions or C–H?π interactions.  相似文献   

20.
Highly selective detection of Hg2+ ion has been achieved using the push–pull-type purine nucleoside-based fluorescent sensor L1. The sensor L1 incorporating aza-18-crown-6 at C6 position of purine nucleoside, is highly sensitive and selective toward Hg2+ ion in CH3CN–H2O mixture (92/8, v/v). The detection limit for the fluorescent sensor L1 toward Hg2+ ion is 7.8 × 10−8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号